第一学期高一数学期末工作总结(精选3篇)
【直线与方程】
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
本学期,根据需要,学校安排我上高一数学。高一数学是课改新内容与旧教材存在着很大的差别,不管是内容的编排还是教法要求都比较高,为了提高自己的教学水平,为了提高自己的教学水平,我下定决心从各方面严格要求自己,在教学上虚心向同行请教,结合本校和班级学生的实际情况,针对性的开展教学工作,使工作有计划,有组织,有步骤。我对一期来的教学工作总结如下:
一、认真备课,做到既备学生又备教材与备教法。
本学期我根据教材内容及学生的实际情况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先考虑到,认真写好教案。首先,我认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。其次,深入了解学生,根据学生的知识水平和接受能力设计教案,每一课都做到“有备而去”,每堂课都在课前做好充分的准备。
二、不断提高自身的教学教研能力,努力提高教学质量。
我能积极参加各种教研活动,如集体备课,校内外听课,教学教研活动,不断提高课堂教学的操作调控能力,语言表达能力。我追求课堂讲解的清晰化,条理化,准确化,条理化,情感化,生动化;努力做到知识线索清晰,层次分明,教学言简意赅,深入浅出。我深知学生的积极参与是教学取得较好的效果的关键。所以在课堂上我特别注意调动学生的积极性,加强师生交流,充分体现学生在学习过程中的主动性,让学生学得轻松,学得愉快。在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分考虑每一个层次的学生学习需求和接受能力,让各个层次的学生都得到提高。
三、虚心向其他老师学习,在教学上做到有疑必问。
在每个章节的学习上都积极征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,并常请备课组长和其他教师来听课,征求他们的意见,改进教学工作。
四、注意培养良好的学习习惯和学习方法
学生在从初中到高中的过渡阶段,往往会有些不能适应新的学习环境。例如新的竞争压力,以往的学习方法不能适应高中的学习,不良的学习习惯和学习态度等一些问题困扰和制约着学生的.学习。为了解决这些问题,我下面一方面下功夫。
1、改变学生学习数学的一些思想观念,树立学好数学的信心
在开学初,我就给他们指出高中数学学习较初中的要难度大,内容多,知识面广,让他们有一个心理准备。对此,我给他们讲清楚,大家其实处在同一起跑线上,谁先跑,谁跑得有力,谁就会成功。对较差的学生,给予多的关心和指导,并帮助他们树立信心;对骄傲的学生批评教育,让他们不要放松学习。
2、改变学生不良的学习习惯,建立良好的学习方法和学习态度
开始,有些学生有不好的学习习惯,例如作业字迹潦草,不写解答过程;不喜欢课前预习和课后复习;不会总结消化知识;对学习马虎大意,过分自信等。为了改变学生不良的学习习惯,我要求统一作业格式,表扬优秀作业,指导他们预习和复习,强调总结的重要性,并有一些具体的做法,如写章节小结,做错题档案,总结做题规律等。对做得好的同学全班表扬并推广,不做或做得差的同学要批评。通过努力,大多数同学能很快接受,慢慢的建立起好的学习方法和认真的学习态度。
五、认真批改作业、布置作业有针对性,有层次性。
导数公式
y=f(x)=c (c为常数)则f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x(x>0)
f(x)=tanx f'(x)=1/cos^2x
f(x)=cotx f'(x)=-1/sin^2x
导数运算法则
加法法则:(f(x)-g(x))'=f'(x)-g'(x)
减法法则:(f(x)+g(x))'=f'(x)+g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2