七年级数学教案(最新3篇)

作为一位不辞辛劳的人民教师,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?下面是小编辛苦为大家带来的七年级数学教案(最新3篇),如果能帮助到您,小编的一切努力都是值得的。

七年级数学教案 篇1

一、教学目标:

1、认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二、教学重难点

重点:二元一次方程组及其解的概念

难点:用列表尝试的方法求出方程组的解。

三、教学过程

(一)创设情景,引入课题

1、本班共有40人,请问能确定男x几人吗?为什么?

(1)如果设本班男生x人,x人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2、男生比x了2人。设男生x人,x人。方程如何表示?x,y的值是多少?

3、本班男生比x2人且男x40人。设该班男生x人,x人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]

(二)探究新知,练习巩固

1、二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]

(2)练习:判断下列是不是二元一次方程组:

x+y=3,x+y=200,

2x-3=7,3x+4y=3

y+z=5,x=y+10,

2y+1=5,4x-y2=2

学生作出判断并要说明理由。

2、二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=

y=0;y=2;y=1;y=

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0.55x+2a=2y

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1、已知两个整数x,y,试找出方程组3x+y=8的解。

2x+3y=10

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]

2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

(四)课堂小结,布置作业

1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)

2、你还有什么问题或想法需要和大家交流?

3、作业本。

教学设计说明:

1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3、本课在设计时对教材也进行了适当改动。例题方面考虑到数x代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级数学教案 篇2

一、目标

1.用它们拼成各种形状不同的四边形,并计算它们的周长。

(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

2.教师揭示以上这些工作实际上是在进行整式的加减运算

3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

生1:“去括号”

生2:“合并同类项”

师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

二、揭示如何进行整式的加减运算

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差。

(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

解:(2a2-4 www.niubb.net a+1)-(-3a2+2a-5)

=2a2-4a+1+3a2-2a+5

=5a2-6a+6

3.拓展练习

(1)求多项式2x -3 +7与6x -5 -2的和。

提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

4.教学例3

先化简下式,再求值:

(做此类题目应先与学生一起探讨一般步骤:

(1)去括号。

(2)合并同类项。

(3)代值)

解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

=15a2b –5ab2+4ab2 -12a2b)

=3a2b –ab2

三、小结

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.进行化简求值计算时

(1)去括号。

(2)合并同类项。

(3)代值

3.通过本节课的学习你还有哪些疑问?

四、布置作业

习题4.5 2. (3) ;4. (2);5.。

五、课后反思

省略

元一次方程组 篇3

第1课 5.1二元一次方程组(1)

教学目的

1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。

教学分析

重点:(1)使学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。

(2)掌握检验一对数是否是某个二元一次方程的解的书写格式。

难点:理解二元一次方程组的解的含义。

突破:启发学生理解概念。

教学过程

一、复习

1、是什么方程?是什么一元一次方程?一元一次方程的标准形式是什么?它的解如何表达?如何检验x=3是不是方程5x+3(9-x)=33的解?

2、列方程解应用题:香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。香蕉和苹果各买了多少千克?

(先要求学生按以前的常规方法解,即设一个未知数,表示出另一个未知数,再列出方程。)

既然求两种水果各买多少?那么能不能设两个未知数呢?学生尝试设两个未知数,设买香蕉x千克,买苹果y千克,列出下列两个方程:

x+y=9

5x+3y=33

这里x与y必须满足这两个方程,那么又该如何表达呢?数学里大括号表示“不仅……而且……”,因此用大括号把两个方程联立起来:   这又成了什么呢?里面的是不是一元一次方程呢?这就是我们今天要学习的内容。板书课题。

二、新授

1、有关概念

(1)给出二元一次方程的概念

观察上面两个方程的特点,未知数的个数是多少,含未知数项的次数是多少?你能根据一元一次方程的定义给出新方程的定义吗?教师给出定义(见P5)。

结合定义对“元”与“次”作进一步的解释:“元”与“未知数”相通,几个元就是指几个未知数,“次”指未知数的最高次数。二元一次方程和一元一次方程都是整式方程,只有整式方程才能说几元几次方程。

(2)给出二元一次方程组的定义。(见P5)式子:

表示一个二元一次方程组,它由方程①、②构成。当某两个未知数相同的二元一次方程组成一个二元一次方程组时应加上大括号。

(3)给出二元一次方程组的解的定义及表示法。

三、练习

P6练习:1,2。

四、小结

1、什么是二元一次方程?什么是二元一次方程组?

2、什么是二元一次方程组的解?如何检验一对数是不是某个方程组的解

五、作业

1、P 5.1 A:1(3、4),3,4。

一键复制全文保存为WORD
相关文章