作为一位杰出的老师,时常要开展教案准备工作,借助教案可以让教学工作更科学化。来参考自己需要的教案吧!以下是人见人爱的小编分享的七年级下册数学教案9篇,如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标:
1、知道有理数加法的意义和法则
2、会用有理数加法法则正确地进行有理数的加法运算
3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点:有理数加法则的探索及运用
教学难点:异号两数相加的法则的理解及运用
教学过程:
一、创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、探求新知
1、甲、乙两队进行足球比赛,
(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量。若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的。各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能举出一些运用有理数加法的实际例子吗?
(学生列举实例并根据具体意义写出算式)
3、学生活动:
(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(3)、你还能再做一些类似的活动,并写出相应的算式吗?
(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)
4、归纳法则:
观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?
(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)
5、例题精讲:
例1 、计算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)
解:(1)、(-5)+(-3)
= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)
= -8
(2)、(-8)+(+2)
= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)
= -6
(4)、5+(-5);
=0 (互为相反的两数之和为0)
6、训练巩固:
1、 p33练一练2
(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)
7、延伸拓展:
(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和
(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明
(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)
三、课堂小结:
学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。
四、布置作业:
1、课本p41第1题
2、列举一些生活中运用有理数加法的实际例子,并相互交流。
情景设置:
同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。
(每一个小长方形的长为a,宽为b)
我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。
从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;
从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。
于是,我们有:3a·3b = 9ab.
新课讲解:
1.探索研究
一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?
请学生回答,教师加以总结归纳:
两个单项式3a与3b相乘,只要把两个单项式的'系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.
4ab·5b这两个单项式的积是20ab。
同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。
2.例题
计算:(1)a·(6ab);
(2)(2x)·(-3xy).
解: (1)a·(6ab)
= (×6)·(a·a)·b
= 2ab;(教师规范格式)
(2)(2x)·(-3xy).
= 8x·(-3xy)
= 【8×(-3)】(x·x)y
= -24xy.
一、教材分析
1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。
2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:
(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析
1、知识目标:掌握最短路径概念、能够求解最短路径。
2、能力目标:
(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。
(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。
3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析
课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。
四、学法指导
1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析
(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。
教学方法及注意事项:
(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。
(2)提示学生“温故而知新”,养成良好的学习习惯。
(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:
(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。
(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。
(三)讲授新课(25~30分钟)
1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。
(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:
①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。
②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。
③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。
④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。
教学方法及注意事项:
①启发式教学,如何实现按路径长度递增产生最短路径?
②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。
(四)课堂小结(3~5分钟)
1、明确本节课重点
2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业
1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。
六、教学特色
以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的`同时,体现所讲内容的实用性,提高学生的学习兴趣。
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?
例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
问:你能解决这个问题吗?有哪些方法?
(让学生思考后,回答,教师再作讲评)
算术法:(328-64)&pide;44=264&pide;44=6(辆)
列方程解应用题:
设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
小敏同学很快说出了答案。“三年”。他是这样算的:
1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。
3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x) (2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
一、指导思想:
根据学生的实际情况,从生活入手,结合教材内容。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级下册数学教学任务。
二、情况分析:
通过上学期考试情况,发现本班学生的数学成绩不甚理想。基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。
三、教学目标
知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。
过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。
情感与态度目标:培养学生学习数学的`兴趣,认识数学源自生活实践,最终回归生活。
四、教材分析
第五章、相交线与平行线:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第六章、实数:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
第七章、平面直角坐标系:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第八章、二元一次方程组及不等式组:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
五、教学措施
1、潜心钻研教材,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。
2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
六、课时安排
教学进度计划安排如下:
第一周正数和负数及有理数5课时
第二周有理数的加减法5课时
第三周有理数的乘法5课时
第四周有理数的乘方5课时
第五周第一单元复习与单元测试5课时
第六周测试质量分析及小结 5课时
第七周整式----单项式5课时
第八周整式----多项式5课时
第九周整式的加减5课时
第十周期中复习及段考5课时
第十一周段考测试质量分析及小结 5课时
第十二周从算式到方程5课时第十三周解一元一次方程(一) 5课时第十四周解一元一次方程(二)5课时第十五周
第十六周
第十七周
第十八周
第十九周
第二十周
实际问题与一元一次方程第三单元复习及测试测试质量分析及小结多姿多彩的图形及直线射线、线段、角期末复习及考试5课时
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1、。不等式组的解集的概念。
2、根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三.教学过程
(一)创设情景,引入课题
1、本班共有40人,请问能确定男女生各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2、男生比女生多了2人。设男生x人,女生y人。方程如何表示? x,y的值是多少?
3、本班男生比女生多2人且男女生共40人。设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
方程x+y=0的解,方程2x+3y=2的解,方程组的解。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知是方程组的解,求a,b的值。
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组的解。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
3、例 已知方程3X+2Y=10
⑴当X=2时,求所对应的Y 的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的代数式表示Y;
⑷用含Y 的代数式表示X;
⑸当X=-2,0 时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1、这节课学哪些知识和方法?
2、你还有什么问题或想法需要和大家交流?
3、教材P82
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
一、教学目标
(一)教学目标
1.了解平方差公式的几何背景。
2.会用面积法推导平方差公式,并能运用公式进行简单的运算。
3.体会符号运算对证明猜想的作用。
(二)能力目标
1.用符号运算证明猜想,提高解决问题的能力。
2.培养学生观察、归纳、概括等能力。
(三)情感目标
1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣。
2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美。
二、教学重难点
(一)教学重点
平方差公式的几何解释和广泛的应用。
(二)教学难点
准确地运用平方差公式进行简单运算,培养基本的运算技能。
三、教具准备
一块大正方形纸板,剪刀。
投影片四张
第一张:想一想,记作(1.7.2 A)
第二张:例3,记作(1.7.2 B)
第三张:例4,记作(1.7.2 C)
第四张:补充练习,记作(1.7.2 D)
四、教学过程
Ⅰ.创设问题情景,引入新课
[师]同学们,请把自己准备好的正方形纸板拿出来,设它的'边长为a.
这个正方形的面积是多少?
[生]a2.
[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?
[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).
[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论。
(教师可巡视同学们拼图的情况,了解同学们拼图的想法)
教学目标
能确定多项式的公因式,熟练运用提公因式法分解因式。
经历探索提公因式法的过程,培养逆向思维能力。
让学生通过参与探索过程,培养合作意识和创新精神。
重点难点
重点
公因式的定义以及提公因式法分解因式。
难点
准确找出多项式中各项的公因式。
教学过程
一、复习回顾
1、 什么叫做因式分解?与整式乘法有什么联系?
2、 计算:
3、 观察上式运算的结果 ,各项所含的因式有什么特点?
学生观察到各项含有相同的因式m后,教师给出公因式的概念:
几个式子的公共的因式称为它们的公因式。
一个多项式如果各项含有公因式,怎样分解因式呢?
二、探究新知
根据 的计算结果,你能将 分解因式吗?分解的根据是什么?你能说说分解的具体做法是什么吗?
学生思考讨论后,教师引导学生分析分解的根据是乘法分配律,具体的做法是把各项的公因式提到括号外面。 随后给出这种方法的名称。
如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法。 用提公因式法分解因式时要把所有的公因式都提出,使剩下的多项式因式里不含公因式。
三、典例剖析
例1 把 因式分解。
教师引导学生观察各项的公因式,并板书分解过程。
解:
反思:分解得 对不对,为什么?
例2把 因式分解。
教师引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式。
板书分解过程:
解:
例3 把 因式分解。
引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式,相同的字母取指数最小的作为公因式。
板书分解过程:
解:
四、课堂练习
基础训练:
1、说出下列多项式中各项的公因式:
(1) ; (2) ;
(3) 。
2、 在下列括号内填写适当的多项式:
(1) ;(2) 。
3、 把下列多项式因式分解:
(1) ; (2) ;
(3) 。
学生解答各题,教师组织学生互相批改。 补充说明,当多项式首项系数是负数时,一般要把负号提出括号。
五、小结
请你总结一下如何确定多项式中各项的公因式。
六、布置作业
教材P62第1题,第2题的(1)(2)(3)。