一元一次方程是初中数学学习的一个重点、难点,需要同学们好好掌握。这次为您整理了一元一次方程(9篇),希望大家可以喜欢并分享出去。
一、说教材 方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。1、教 学 目 标(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·2、了解一元一次方程解法的一般步骤·(2)、能力目标: 经历 "把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望 2、通过埃及古题的情境感受数学文明。2、教学重点:通过"去分母"解一元一次方程3、教学难点:探究通过"去分母"的方法解一元一次方程二、说教法:在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。我的教学设计的指导思想是: 1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。3、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。三、说学法教学活动流程图 活动内容和目的活动1列方程解决实际问题 创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·活动2解含有分母的一元一次方程 以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·
活动3 "去分母"的方法解一元一次方程 用"去分母"的方法解一元一次方程,掌握 "去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤· 活动4 小结 总结本节收获 活动1、创设问题情境: 引言:这件珍贵的文物是纸莎草文书,是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有3700多年的历史了·在文书中记载了许多有关数学的问题· 问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。(1)能不能用方程解决这个问题? (2)能尝试解这个方程吗? (3)不同的解法有什么各自的特点? 设计意图:1、利用列方程、解方程解决实际问题,再一次让学生感受方程的优越性,提高学生主动使用方程的意识· 2、经过对同一方程不同解法到去分母能够使解方程的过程更加便捷,明白为什么要去分母,这是 "去分母"这一步骤的必要性;同时,让学生认同"去分母"是科学的、可行的,明确为什么能去分母·这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现"方程两边同时乘以所有分母的最小公倍数"这一方法·也首次由学生自行突破了难点。 3、通过交流,让学生用自己的语言清楚地表达解决问题的过程,提高学生的语言表达能力· 活动2 下面方程 可以怎样求解?观察方程,回答教师提出的问题并对学生的回答进行总结:先去分母·怎样去分母? 解去掉分母后的这个方程 归纳总结去分母的方法:在方程两边同时乘以所有分母的最小公倍数;依据是等式的性质2,即"等式两边同时乘同一个数,结果仍相等·"呈现不同学生的解题过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点·巩固了学生对解方程的透彻理解。这样做的目的不仅培养了学生的学习自主性和团体协作精神,还对与重、难点知识的突破起到了一定的促进作用。 通过对错例的辨析,加深学生对 "去分母"的认识,避免解方程时出现类似错误· 去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决通过在解方程过程中"去分母"这一步骤体会转化思想·活动3 解方程 设计意图:用实践来加深对 "去分母"的方法解一元一次方程的认识· 结合本题思考,能总结解这种方程的一般操作过程吗? 巩固所学的一元一次方程的解法,同时说明解方程的步骤是程序化的,但不能生搬硬套,每个步骤要不要使用、何时使用都应视方程的特征而定·了解对方程的每一次变形都是为了将方程最终化归为的形式·解题时应根据题目特点,合理选择解题步骤·小结活动4总结 (1)学生能否总结本节的知识,是否理解去分母的作用、依据,是否掌握去分母的具体做法; (2)学生是否掌握了一元一次方程解法的一般步骤; (3)学生是否能准确表达自己的观点· 最后复习、巩固本节的知识,学会总结反思·四。评价分析数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同参与发展的过程。本节课的评价要让学生体会到参与学习、与人合作的重要性,获得成绩的喜悦,从而激发性的学习动力。在这节的数学课,如要获得最直接、真实的反馈,就要尽量让学生多说、多思考,对于学生提出的问题和解决问题的方法,教师都要给予鼓励和引导,并随时观察解决,评价应充分考虑到每个学生的差异,这节课通过现代化的技术的运用,节省出尽可能多的时间,提出挑战性的问题,让学生通过开放式的数学讨论提高学生学习的兴趣,在交流中获益。通过随堂练习和作业来激励其学习。同时做练习时,将评价及时反馈给学生,树立学习数学的自信心,促进学生的进一步发展。并在课后作成长记录,使学生比较全面了解自己的学习过程,特别感受自己的不断成长和进步,为下一步教学提供重要依据。
一、教材分析:
1、教材所处的地位和作用:
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法。
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程。让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验。
2、教学目标:
根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:
知识技能目标
①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用。
②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。
③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想。
数学思考目标
用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决。
情感价值目标:
让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
3、重点、难点:
结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点。
教学重点:知道什么是方程、一元一次方程,找相等关系列方程。
教学难点:思维习惯的转变,分析数量关系,找相等关系。
二、教学策略:
如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:
1.生活引路,感知概念背景;
2.比较方法,明确意义;
3.感受过程,形成核心概念;
4.运用新知,巩固方法;
5.归纳总结,巩固发展。
本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。
三、学情分析:
根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
四、教学过程:
本节课的教学过程我设计了以下六个环节:
(一) 情景引入
采用教材中的情景
在这个环节中我提出了三个问题:
问题1:从上图中你能获得哪些信息?
问题2:你会用算术方法求吗?
问题3:你会用方程的方法解决这个问题吗?
(二)学习新知
在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题。
通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在。
然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念。
解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程。(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族。)
在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现。
方程的概念:含有未知数的等式叫方程。小学里已经给出了方程的概念,这里可适当处理。
在这里我开始向学生渗透列方程解决实际问题的思考程序。
(三)讨论交流
讨论1:比较列算式和列方程两种方法的特点。
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系。
而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。
紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维。
讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?
在这个讨论活动中,我采取了先小组合作交流后全班交流。
通过交流后,学生中出现如下结果:
从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元。
要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习。
在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。
(四)初步应用
学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。
1、例题:根据下列问题,设未知数并列出方程:
(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。
(五)再探新知
提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.
在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念
教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质。
(六)课堂小结
让学生先归纳,然后教师补充方式进行,主要围绕以下问题:
本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?
五、课堂设计理念
本节课着力体现以下几个方面:
1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。
2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。
4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
学习目标
1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解
2. 会用一元一次方程解决工程问题
重点难点
重点:建立一 元一次方程解决 实际问题
难点:探究实际问题与一元一次方程的关系
教学流程
师生活动 时间
复备标注
一、 复习:
解下列方程:
1.9-3y=5y+5
2.
二、新授
例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?
分析:这里可以把总工作量看做1。思考
人均效率(一个人做1小时完成的工作)(量)为 。
由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的`工作量为 。
这项工作分两 段完成,两段完成的工作量之和为 。
解:设先安排x人工作4小时。
根据两段工作量之和应是总工作量,得
.
去分母, 得 4x+8(x+2)=-1701
去括号,得 4x+8x+16=40
移项及合并同类项,得
12x=24
系数化为1,得 X=-243.
所以 -3x=729
9x=-2187.
答:这三个数是-243,729,-2187。
师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决
例4 根据下面的两种移动电话计费方式表,考虑下列问题。
方式一 方 式二
月租费 30元/月 0
本地通话费 0.30元/月 0.40元/分
(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则
0.4t=30+0.3t
移项,得 0. 4t -0.3t =30
合并同类项,得 0.1t=30
系数化为1,得 t=300
由上可知,如果一个月内通话300分,那么两种计费方式相同。
思考:你知道怎样选择计费方式更省钱吗?
解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。
归纳:用一元一次方程分析和解决实际问题的基本过程如下
三、巩固练习:94页9、10
四、达标测试 :《名校》55页1.2.3.
五、课堂小结:
(1) 这节 课我有哪些收获?
(2) 我应该注意什么问题?
六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:
(1)每一步的依据分别是什么?
(2)求方程的解就是把方程化成什么形式?
先让学生读题分析规律,然后教师进行引导:
允许学生在讨论后再回答。
在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数
学生独立解方程方程的解是不是应用题的解
教师强调解决 问题的分析思路
学生读题,分析表格中的信息
教 师根据学生的分析再做补充
学生思考问题
教师根据学生的解答,进行规范分析和解答
教学目标
1.知识与技能
(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;
(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系。
2.过程与方法
(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力。
(2)经历问题解决的过程,提高解决问题的能力。
3.情感态度与价值观
(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;
(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
重、难点与关键
1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点。
2.难点:立体图形与平面图形之间的转化是难点。
3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键。
教具准备
长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图
教学过程
一、引入新课
1.打开课本,看第117页城市的现代化建筑,学生认真观看。
2.提出问题:有哪些是我们熟悉的几何图形?
二、新授
1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验。
2.指定一名学生回答问题,并能正确说出这些几何图形的名称。 学生回答:有圆柱、长方体、正方体等等。
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。
3.立体图形的概念。
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)用教学挂图展示图4.1-4
(4)提出问题:在挂图中中,包含哪些简单的平面图形?
(5)探索解决问题的方法。
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。
4.平面图形的概念。
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。
5.立体图形和平面图形的转化。
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看。
(2)提出问题。
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?
(3)探索解决问题的方法。
①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。
②进行小组交流,评价各自获得的结论,得出正确结论。 ③指定三名学生,板书画出的图形。
6.思考并动手操作。
1.熟练地进行有理数加减混合运算,并利用运算律简化运算;
2. 培养学生的运算能力。
加减运算法则和加法运算律。
省略加号与括号的计算。
电脑、投影仪
一、从学生原有认知结构提出问题
说出-6+9-8-7+3两种读法。
二、解决问题
1.计算:(1)-12+11-8+39; (2)+45-9-91+5;
(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
2.用较简便方法计算:
-16+25+16-15+4-10.
三、应用、拓展
例1.计算:2/3-1/8-(-1/3)+(-3/8)
练一练:1.P46第1题(1)-(4)题;P46问题解决
例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
(9)(a-c)-(b-d); (10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
2.分别根据下列条件求代数式·-y-z+w的值:
(1)·=-3,y=-2,z=0,w=5;
(2)·=0.3,y=-0.7,z=1.1,w=-2.1;
教学目标
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号。
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性。
教学重难点
重点:去括号法则,准确应用法则将整式化简。
难点:括号前面是“-”号,去括号时括号内各项都变号。
教学过程
一、复习旧知
1. 化简
-(+5) +(+5) -(-7) +(-7)
2. 去括号
① -(3- 7) ② +(3- 7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(- a+c) ② - (- a+c)
③ +(a-b+c) ④ -(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判断正误
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例题学习:为下面的式子去括号
+3(a - b+c) - 3(a - b+c)
五、课堂检测:
去括号:
① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题2.2 第2,3题
选做题:课本70页 习题2.2 第4题
第1课时 认识立体图形与平面图形
教学目标
1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥。
教学过程
一、情境导入
观察实物及欣赏图片:
我们生活在一个图形的世界中,图形世界是多姿多彩的。其中蕴含着大量的几何图形。本节我们就来研究图形问题。
二、合作探究
探究点一:立体图形
【类型一】 从实物图中抽象立体图形的认识
例1 观察下列实物模型,其形状是圆柱体的是( )
解析:圆柱的上下底面都是圆,所以正确的是D.
方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。
【类型二】 立体图形的名称与分类
例2 如图所示为8个立体图形。
其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.
解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.
方法总结:正确理解立体图形的定义是解题的关键。
探究点二:平面图形的认识
【类型一】 平面图形的识别
例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为( )
A.5个 B.4个
C.3个 D.2个
解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形。故选B.
方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内。
【类型二】 由平面图形组成的图形
例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?
解:(1)由5个图形组成;
(2)由2个正方形和1个长方形组成;
(3)由3个四边形组成。
方法总结:解决这类问题的关键是正确区分图形的形状和名称。
三、板书设计
1.立体图形
特征:几何图形的各部分不都在同一平面内。
2.平面图形
特征:几何图形的各部分都在同一平面内。
本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性。使学生以最佳状态投入到学习中去。通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识。使学生在讨论交流的基础上总结出立体图形和平面图形的特征。
第2课时 从不同的方向看立体图形和立体图形的展开图
教学目标
1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;
2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形。(重点,难点)
教学过程
一、情境导入
《题西林壁》
苏东坡
横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?
二、合作探究
探究点一:从不同的方向观察立体图形
【类型一】 判断从不同的方向看到的图形
例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )
解析:从上面看依然可得到两个半圆的组合图形。故选D.
方法总结:本题考查了从不同的方向观察物体。在解题时要注意,看不见的线画成虚线,看得见的线画成实线。
【类型二】 画从不同的方向看到的图形
例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形。
解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形。
解:如图所示:
方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线。在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等。
教学目的:
知识与技能目标:
会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。
过程与方法:
通过探索 规律的问 题,进一步体会符号表示的意义,
通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。
教学重点、难点:
重点:整式加减的运算。
难点:探索规律的猜想。
授课时间:
教学过程:
Ⅰ.创设现实情景,引入新课
摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的小屋子需要 枚棋子
(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。
Ⅱ.根据现实情景,讲授新课
例题讲解:
练习:1、计算:
(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
Ⅲ.做一做
P11 随堂练习
Ⅳ.课时小结
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
Ⅴ.课后作业
P12习题1.3:1(2)、(3)、(6),2。
板书设计:
第二节 整式的加减(2)
一、旅游中发现的几何体
二、生活中常见的几何体
VI.教学后记
【第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
【第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
【第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
【第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率×工作时间。
(4)工作量=人均效率×人数×时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;
(6)产油量=油菜籽亩产量×含油率×种植面积。
(7)应用:行程问题:路程=时间×速度;
工程问题:工作总量=工作效率×时间;
储蓄利润问题:利息=本金×利率×时间;
本息和=本金+利息。
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率×工作时间。
(4)工作量=人均效率×人数×时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;
(6)产油量=油菜籽亩产量×含油率×种植面积。
(7)应用:行程问题:路程=时间×速度;
工程问题:工作总量=工作效率×时间;
储蓄利润问题:利息=本金×利率×时间;
本息和=本金+利息。