在教学工作者实际的教学活动中,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么优秀的教案是什么样的呢?本文是编辑为大家整理的七年级数学下册教案优秀7篇,仅供参考,希望能够帮助到大家。
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三。教学过程
(一)创设情景,引入课题
1、本班共有40人,请问能确定男女生各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2、男生比女生多了2人。设男生x人,女生y人。方程如何表示? x,y的值是多少?
3、本班男生比女生多2人且男女生共40人。设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)
(二)探究新知,练习巩固
1、二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)
2、二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
方程x+y=0的解,方程2x+3y=2的解,方程组的解。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知是方程组的解,求a,b的值。
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组的解。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
3、例 已知方程3X+2Y=10
⑴当X=2时,求所对应的Y 的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的代数式表示Y;
⑷用含Y 的代数式表示X;
⑸当X=-2,0 时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1、这节课学哪些知识和方法?
2、你还有什么问题或想法需要和大家交流?
3、教材P82
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
一、学情分析
我校的学生整体基础较差,小学没有养成良好的学习习惯,所以任务艰巨。通过上学期的学习学生对学知识有一定程度的掌握,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数极少。对待转化生来说,简单的基础知识还不能有效掌握,成绩较差。学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极投入到学习中去,少数学生学习上有困难,对学习处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,家庭作业,学生完成的质量要打折扣,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正错误的习惯,还需要加强,需要教师的督促才能做好。陶行知说:教育就是培养习惯。面向全体学生,整体提高水平,全面培养能力,养成良好的学习习惯。这是本期教学中重点予以关注的。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
二、教材分析
本学期的教学内容共计六章,第7章:平面图形的认识(二);第8章:幂的运算;第9章:整式的乘法与因式分解;第10章:二元一次方程组;第11章:一元一次不等式第12章:证明
教材每章开始时,都设置了章前图与引言语,激发了学生的学习兴趣与求知欲望。在教学中,适当安排如“观察与猜想、试验与探究、阅读与思考、信息技术应用”等以及栏目,让我们给学生适当的思考空间,使学生能更好地自主学习。在教材各块内容间,又穿插安排了综合性、实践性、开放性等等的数学活动,不但扩大了学生知识面,而且增强了学生对数学文化价值的体验与数学的应用意识。习题设计分为;复习巩固、综合运用、拓广探索三类,体现了满足不同层次学生发展的需要。
三、 教学重、难点
1、一元一次方程和二元一次方程组是与实际生活密切相关的内容,重点是从实际情境出发基于学生的认知水平引入并展开有关知识,使学生了解方程是反映现实世界数量关系的有效数学模型,并学会寻找所给问题中隐含着的数量之间的等量关系,掌握其基本的解决方法。难点是在实践与探索小节中通过实例运用方程思想解决实际问题。
2、整式的乘法及因式分解内容,本来是八年级上册的学习内容,这次调整,无疑是将教学难点向前挪移了,对整个初中学习阶段来说,是分散难点,但对初一学生来说,是增加了难度,在教学过程中要把握分寸,切忌这一部分的知识学习变成了学生整个初中阶段学习的分水线。
3、相交线与平行线、轴对称与旋转是对图形的进一步认识,涉及到平行线的概念、平行线的性质、平行线的判定、平移的观点、垂线及两条平行线间的距离、轴对称、旋转对称、中位线、角平分线、图形的简单变换等相关知识。重点是通过观察与操作,让学生感知确认这些知识的合理性、必然性,并掌握其在实际生活中的具体应用,同时辅以数学说理,给学生一定的理性训练与图形变换的思想。难点是数学说理(也就是几何证明)。
4、数据的分析一章,简要地介绍了统计数据分析问题时所采用的一种重要的数学方法——平均数、中位数、众数、方差等相关概念,重点是使学生学会统计数据、分析处理数据,合理使用平均数、中位数与众数这三个有代表性的数值,较为正确地描述所得到的众多数据。难点是让学生通过实例体会这些数据的具体求法,并让学生掌握在计算机中如何求出它们的具体方法(知识扩展)。
4、课题学习重点是让学生真正参与进来,在实践探索加深理解有关数学知识,通过获得成功的体验和克服困难的经历,增进应用数学的信心与能力。
四、教学措施
1、认真做好教学工作。把教学工作作为提高教学质量和学生成绩的主要途径,认真研究教材,体会新课标理念,认真上课、认真辅导和批改作业,同时让学生认真学习。
2、通过介绍数学家、数学史和数学趣题,激发学生学习兴趣。
3、引导学生积极参与知识建构,营造民主、和谐、平等,学生自主探究、合作共享发现快乐的课堂,让学生体会学习的快乐
4、通过实践探索,培养学生归纳推理能力和多种途径探求问题的解决方式。
5、培育学生良好的学习习惯,发展学生的非智力因素。
6、成立课外兴趣小组,开展丰富多彩的课外活动。
7、进行分层教育的探索,让全体学生都得到充分的发展。
五、教学进度
第一章 二元一次方程组 十课时
第二章 整式的乘法 十课时
第三章 因式分解 十五课时
期中复习及考试 五课时
第四章 相交线与平行线 十五课时
第五章 轴对称与旋转 八课时
第六章 数据的分析 十课时
期末复习及考试 十课时
一、班级情况分析
本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。
一(7)班有学生38人, 上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。 两班的整体成绩均不够理想。
二、教材分析
本套教材切合《标准》的课程目标,有以下特点:
1、为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。
2、向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。
3、为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。
4、展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。
5、满足不同学生发展的需求。
三、教学目标及要求
第一章:
1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2、经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3、了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。
4、会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1、经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。
3、经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。
4、进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实 。
第三章:
1、能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。
2、了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。
3、通过实例,体验收集、整理、描述和分析数据的过程。
4、能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。
第四章:
1、经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。
2、体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。
3、能设计符合要求的简单概率模型。
第五章:
1、通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。
2、在探索图形性质的过程中,发展推理能力和有条理的表达能力。
3、进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
4、了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
5、在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
第六章:
1、经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。
2、能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。
3、能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。
4、能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
第七章:
1、在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3、探索并了解基本图形的的轴对称性及其相关性质。
4、能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。
5、欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学改革的设想(教学具体措施)
充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:
1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。
2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。
3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。
4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。
5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。
教学目标:
1、通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);
2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力。
教学重点:深化对正负数概念的理解。
教学难点:正确理解和表示向指定方向变化的量。
教与学互动设计:
(一)知识回顾和理解
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。
[问题1]:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明。
参考例子:用正数、负数和零表示零上温度、零下温度和零度。
思考 “0”在实际问题中有什么意义?
归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义。
如:水位不升不降时的水位变化,记作:0 m.
[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?
(二)深化理解,解决问题
[问题3]:(课本P3例题)
【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%。
写出这些国家这一年商品进出口总额的增长率。
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义。写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量。类似的还有水位上升、收入上涨等等。我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们。
巩固练习
1、通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值。
2、让学生再举出一些常见的具有相反意义的量。
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247, 孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考
(课本P6)用正数和负数表示加工允许误差。
问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?
2、你知道还有哪些事件可以用正负数表示允许误差吗?请举例。
(三)应用迁移,巩固提高
1、甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是 。
2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?
3、摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:
星期 一 二 三 四
增减 -5 +7 -3 +4
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用。
(四)课时小结(师生共同完成)
一、教材分析
1、教材的地位和作用
课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。
2、教学目标
根据学生的学习内容、新课程理念和认知水平,特制定如下目标:
(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点
(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析
我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析
枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。
四、教学形式和课前准备
本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。
五、教学过程分析
教学过程设计意图说明
新课引入
资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?
(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!
探究新知活动一:
阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一。
活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)
活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。
课堂小结:
1.当前水资源状况,
2.节约水资源带来的价值,
3.节约水资源的办法
布置作业
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。
通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!
来源于同学们身边的数据更有说服力,同时让同学感受到节水应从我做起。
自由发言,各抒己见;把数学和生活联系起来,是学生体会到学有所用,体会到数学的应用价值。
引导学生思考、交流、梳理所学知识,培养理性思维能力,加深对资源现状的理解。
学会整理、归纳所学知识;分析课题报告。
六、自我评价
这个课题学习,应该用比较长的时间,运用所学知识对生活问题进行学习、探究。这需要学生的充分准备,然后可安排学生一起进行探讨、交流。在多媒体教室进行这个课题学习,可以充分调动学生的学习兴趣,发挥学生的各方面才能,培养学生合作学习的能力。
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;
教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
四、课后作业:课本P5习题1。1A第1、2、4题。
【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。
【教具准备】小黑板 科学计算器
【教学过程】
一、复习导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、练习内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若_=6,则=( )
5、若=0,则_=( ) 6、当_( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4_2-49=0; 3、(25/81)_2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固