作为一名无私奉献的老师,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么你有了解过教案吗?
垂线
[教学目标]
1、 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2、 掌握点到直线的距离的概念,并会度量点到直线的距离。
3、 掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1、教学重点:垂线的定义及性质。
2、教学难点:垂线的画法。
[教学过程设计]
一。 复习提问:
1、 叙述邻补角及对顶角的定义。
2、 对顶角有怎样的性质。
二。新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作 ,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1 过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点P与直线l上各点O,
A,B,C,……,其中 (我们称PO为点P到直线
l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?
性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成: 垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,PO的长度叫做点 P到直线l的距离。
例1
(1)AB与AC互相垂直;
(2)AD与AC互相垂直;
(3)点C到AB的垂线段是线段AB;
(4)点A到BC的距离是线段AD;
(5)线段AB的长度是点B到AC的距离;
(6)线段AB是点B到AC的距离。
其中正确的有( )
A. 1个 B. 2个
C. 3个 D. 4个
解:A
例2 如图,直线AB,CD相交于点O,
解:略
例3 如图,一辆汽车在直线形公路AB上由A
向B行驶,M,N分别是位于公路两侧的村庄,
设汽车行驶到点P位置时,距离村庄M最近,
行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。
练习:
1、
2、教材第9页3、4
教材第10页9、10、11、12
小结:
1、 要掌握好垂线、垂线段、点到直线的距离这几个概念;
2、 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;
3、 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
作业:教材第9页5、6.
总时:1时
第1时, 备时间:开学第十五周 上时间:第十六周
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。
2 .近似数和有效数字 并按要求取近似数。
3.从统计图中获取信息 并用统计图形象地表示数据。
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感。
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。
(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值。 2.发展学生的创新能力和克服困难的勇气。
二、教学重点:1.感受较小的数据。
2.用科学记数法表示较小的数。
3.近似数和有效数字 并能按要求取近似数。
4.读懂统计图 并能形象、有效地用统计图描述数据。
教学难点:形象、有效地用统计图描述数据。
教学过程:.创设情景 引入新
三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明。
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚。
四。时小结:我们这节回顾了以下知识:
1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。
2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。
3.又一次欣赏了形象的统计图 并从中获取有用的'信息。
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。
(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 �
(1)形象统计图(略)只要合理即可。
(2)从表中的数据看出 河流越长 其流域面积越大。
(3)河流的年径流量与河流所处的位置有关系。
五。后作业:
一、教学目标:
通过观察生活中的大量物体,认识基本的几何体,数学教案-北师大版数学(七年级上)新教材教案 生活中的图形(一)。
经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
二、教学过程:
1、引入:
(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)
(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:
(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论
如何对以上几何体进行分类:
1)按底面
2)按侧面
学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:
投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:
(1)、上图中哪些物体的形状与长方体、正方体类似?
(学生在回答桌面时老师应指出桌面是指整个层面)
(2)上图中哪些物体的'形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?
(3)请找出上图中与笔筒形状类似的物体?
(4)请找出上图中与地球形状类似的物体?
4、想一想:
生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:
与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。我们也学会简单地区别不同的物体。
6、作业:
P4习题
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的。面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:等等刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
教学过程:
一、课前准备:
课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。
二、课内交流、探究
师:在储蓄的过程中,你搜集到哪些相关的知识?(学生分组汇报调查结果)
(生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:
(1)有关储蓄的一般知识,如储蓄的方式;
(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;
(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;
(4)、有关调查中遇到的困难、解决的方法和自己的感受)
师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。
板书:利息与本金的。比值叫做利率。
利息=本金利率时间
三、创设情景、体验储蓄
1、创设情景
师:同学们,张大爷是一个孤寡老人,他打算把自己多年来节省下来的1000元钱存入银行,定期为两年,由于他行动不便,你能帮助他进行储蓄吗?
2、体验储蓄。根据刚才的汇报情况,安排教学过程。
(1)学生拿出复制好的储蓄存款凭证进行填写。
(2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。
(3)、充分联系生活,设置储蓄密码。
师:同学们,为了保证储蓄的安全,�
师:设置什么样的密码比较好呢?
(学生热烈进行讨论)
生1:可以用存款人的生日。
生2、可以用有纪念意义的日期。
生3:比较容易记的数字。
师:设置密码时,一般设置比较容易记忆的数字,可以用某人的生日或与他有关系的一些数字。
师:请你们给张大妈设置一个密码。
(4)保管好存折或存单。
师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。
四、运用知识、解决问题
1、运用新知识解决问题。
师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?
(学生分组讨论计算,汇报情况)
生1:10002.43%2=58.6(元)
生2:10002.43%2=58.6(元)
58.620%=11.72(元)
58.6-11.72=46.88(元)
生3:10002.43%2=58.6(元)
58.6(1-20%)=46.88(元)
师生集体讨论订正,教师强调利息的计算方法。
师:储蓄到期时,张大妈实际领取本金和利息一共是多少?
生:1000+46.88=1046.88(元)
师生总结计算方法。
2、巩固新知学生进行练习
五、课后实践、体验储蓄过程
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。
教学与反思:
本节课的教学设计能根据新的《课程标准》理念的要求,结合学生的生活实际,力求体现了以下几点教学思想:
一、关注学生发展,整合教学目标
新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。
二、联系实际应用,重组教学内容
长期以来,教学内容都是教师在遵循教材和大纲的基础上确立的,教师只关注教材、大纲和教学参考资料,忽视了学生的生活实际和生活背景,学生接受的归根到底只能算是数学知识。这种数学知识不能服务于学生的生活,更不能促进学生的发展。因此我们在教学中一定要加强课程内容与生活以及现代社会科技发展的联系,关注学生的兴趣和经验,精选终身学习必备的基础知识和技能。本节课充分联系学生的实际生活应用,重组教学内容,将课前调查、课后实践、怎样填写储蓄凭条、怎样设置密码等知识和本节课教学内容利息组合在一起。使学生在实际的应用中经历了储蓄的过程,充分理解了有关利息的知识。并在相关问题的解决中,相应地获得了终身发展必备的知识和技能。
三、培养学生能力,开放教学过程
学生各种能力的形成和发展是我们教学的首要任务。传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。本节课根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。课前让学生分组进行有关储蓄知识的调查,搜集有关相关的信息,这样培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力;课堂教学时让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力;课后又要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。
四、针对学生差异,实施多元评价
《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。
教学内容分析:
《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的 加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
教学目标分析:
(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;
(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法
(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点
教学重点:理解乘方定义,会进行有理数的乘方运算;
教学难点:有理数乘方运算的符号法则的形成与运用
教法学法分析:
教法:启发式教学,多媒体辅助教学;
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题
(1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧� 明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知 巩固概念
练习1、2巩固乘方定义及乘方表示的注意点,培养学(com-生良好的学习习惯。例题进一步强化乘方运算
4、探索研究 发现规律
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知 巩固训练
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力
6、拓展思维 知识延伸
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结 归纳反思
锻炼学生及时总结的良好习惯和归纳能力
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;
(1)关注学生的智力参与度
(2)学生的课堂参与度
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
教学目标
1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处
2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。
3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
教学重点:认识一些基本的'几何体,并能描述这些几何体的特征
教学难点:描述几何体的特征,对几何体进行分类。
教学过程:
一、设疑自探
1.创设情景,导入新课
在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?
2.学生设疑
让学生自己先思考再提问
3.教师整理并出示自探题目
①生活常见的`几何体有那些?
②这些几何体有什么特征
③圆柱体与棱柱体有什么的相同之处和不同之处
④圆柱体与圆锥体有什么的相同之处和不同之处
⑤棱柱的分类
⑥几何体的分类
4.学生自探(并有简明的自学方法指导)
举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?
说说它们的区别
二、解疑合探
1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探
2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类
2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。
三、质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四、运用拓展:
1.引导学生自编习题。
请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征
2.教师出示运用拓展题。
(要根据教材内容尽可能要试题类型全面且有代表性)
3.课堂小结
4.作业布置
五、教后反思
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3、通过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、( )2=9; 2.( )2 =0.25;
5、( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26②247③0.2④3⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是