作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?的小编精心为您带来了初一数学教案【最新9篇】,如果能帮助到您,小编的一切努力都是值得的。
7.3.1多边形
[教学目标]
1.了解多边形及有关概念,理解正多边形及其有关概念.
2.区别凸多边形与凹多边形.
[教学重点、难点]
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
[教学过程]
一、新课讲授
投影:图形见课本P84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本P85.7.3—6.
在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本P86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本P90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形ABCDEF的所有对角线.
2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?
3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?
4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?
为了更好的完成学校的初一数学的教学任务,依照教科室的计划,针对初一学生的特点和所教两个班的的具体情况特制订如下教学计划:
一、学情介绍:
我本学期担任初一七、八班的数学教学工作。初一(八)班共有学生55人,初一(七)班有学生56人。根据小学升初中考试的情况来分析学生的数学成绩不算理想,总体的水平一般,往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。初一学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其)●(学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。本学期的工作重点是扭转学生的学习态度,培养学生的好的学习习惯、创新意识,激发学生学习数学的热情和兴趣,培优补差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。
二、教学措施
1、根据今年学校及教科室计划,认真构建“双思三环六步”课堂教学模式,努力提高课堂教学的有效性和实效性。双思”是指教师反思教学、学生反思学习;“三环”就是定向、内化、发展;“六步”分别是指:提供资源(入境生趣)、了解学情(自学生疑)、弄清疑难(学习释疑)、点难拨疑(练习解难)、反思教学(反思学习)、引导实践(迁移创新)。我们要在反思中成长,学生要在反思中进步;我们要反思的主要内容是怎样优化“三环六步”教学设计,不断提高课堂教学效率;学生要反思的主要内容学习积极性、学习策略和学习方法运用是否得当、不断提高学习效率。
初一学生刚刚进入初中阶段,正是从小学过度到初中学习的重要阶段,也是进行“双思三环六步”课堂教学模式的最佳时期,要逐步的培养和完善这种模式,要求我们多研究、多思考、多创新、多探究。按照“低(起点)慢(速度)多(落点)高(标准)”元素结构教学法进行教学,“低起点”考虑到学生的基础,初一学生从小学数学到初中数学的学习是一个飞跃,怎样帮助学生慢慢过渡是一个难点,从细小的问题、每一个小知识点出发结合小学知识融汇到初中的知识中去,从而使学生很快接受知识。“慢速度”反对快速度教学,主张教学要考虑学生的学习规律和接受程度,兼顾初一学生的生理、心理、知识、能力、意志、品德等特征和差异,步步为营,梯次推进,使学生有效地掌握知识和培养能力。“多落点”强调教育要考虑到初一学生个性差异的特点。个性差异是表现在多方面,不仅有年龄、性别、性格、身体的差异,还有很多学习上的差异,个人思维方式、生活方式的差异。推动不同层次的学生都有收获。“高标准”为学生确立的学习标准。而且把目标细化,使学生能很快达到,既能掌握知识又能体会到成功的愉悦,使初一的学生对数学充满兴趣,从而达到高效课堂的标准。
2、精心设计习题,使习题从简单到复杂形成梯度,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通,培养思维的灵活性。
3、批改作业做到全批全改,从过程到步骤严格要求,发现问题及时解决作认好总结,从初一使学生慢慢养成认真按步骤做作业的习惯。
4、继续实行课前一题的模式。课前五分钟每个班的课代表把上一节课涉及到的典型题目呈现在黑板上,学生在解题的过程中复习上一节的内容,而且也能做到尽快把学生从课间拉回到上课的的状态,并力求把学生中新方法新思维挖掘出来。
5、实行一对一的帮扶活动,由好学生带动一个差一点的学生,从知识、作业、学习习惯等各方面互帮互助,从而全面提高学生的综合素质。
三、合理落实各项教学常规
1、备好课是上好课的基础,是提高课堂教学质量的关键。根据“双思三环六步”课堂教学模式,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,准备大量的、难度不同的习题备用,备课以个人独立钻研备课为主,在此基础上进行集体备课,广泛吸取其他老师的优点和精华,完善自己的备课达到精益求精。
2、上课时要严格按照“双思三环六步”课堂教学模式的步骤进行教学,讲课时要围绕中心内容,突出重点,突破难点。整个教学过程要严密组织,使课堂教学既层次分明,又协调紧凑。教学时要面向全体学生,使各类学生都学有所得。特别是要照顾到差生,力求使他们能掌握本课时的基本知识和技能。
3、作业要求要严格,但布置的作业要适量。精选作业,根据不同程度学生,布置适当的选做题,以关注不同层次的学生,做到分层教学、布置作业。作业批改要有批语,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。
4、要保证后进生的进步。因为基础的不同,有一部分学生在知识的学习上有一定的困难,而且这部分学生更应该是我们关注的重点,在力所能及的情况下,特别是精心设计一些适合他们的问题和练习作业,引导他们思考,激发他们的学习兴趣,唤醒他们学习的自信心,充分利用自习课或课余时间,加强对后进生的个别辅导。
四、教研工作
利用“学科活动日”和集体备课,多加强理论学习研讨,提高理论实效,交流学习心得,积极参加教学观摩和说评课活动。结合学校的“课前四准备,课内四重视,课后四落实”课题研究做好适合数学学科和学生实际情况的训练方法;在上好每一节课的基础上,及时写出教学反思为以后工作做好总结。
五、教学进度和期末复习安排:
第一周9.7—9.13第一章有理数约4课时
第二周9.14—9.201.3有理数的加减约4课时
第三周9.21—9.271.4有理数的乘除约4课时
第四周9.28—10.111.5有理数的乘方约3课时
第五周10.12—10.18第二章整式的加减2课时
第六周10.19—10.252.2整式的加减约2课时
第七周10.26—11.1第三章一元一次方程约4课时
第八周11.2—11.82.2从古老的代数书说起──一元一次方程的讨论(1)约4课时
第九周11.9—11.152.3从“买布问题”说起──一元一次方程的讨论(2)约4课时
第十周11.16—11.223.4再探实际问题和一元一次方程约4课时
第十一周11.23—11.29复习、期中考试
第十二周11.30—12.6第四章图形的认识初步4.1多姿多彩的图形约4课时
第十三周12.7—12.134.2直线、射线、线段约2课时
第十四周12.14—12.204.3角的度量约3课时
第十五周12.21—12.274.4角的比较与运算约3课时
第十六周12.28—1.3第五章数据的收集与整理约5课时
第十七周1.4—1.104.3课题学习约2课时
第十八、十九、二十周1.11—2.1复习本学期内容
第二十一周2.2—2.6期末考试
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点:深化对正负数概念的理解
知识重点:正确理解和表示向指定方向变化的量
教学过程:(师生活动)设计理念
知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分
界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数 。
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入
负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
分析问题
解决问题问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢?
可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业
1,必做题:教科书第7页习题1.1第3,6,7,8题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
多边形及其内角和
知识点一:多边形的概念
⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________.
如果一个多边形由n条线段组成,那么这个多边形叫做____________.(一个多边形由几条线段组成,就叫做几边形.)
多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序。如五边形ABCDE.
⑵多边形的边、顶点、内角和外角.
多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________.
⑶多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做___________________.画一个五边形ABCDE,并画出所有的对角线。知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形.
知识点二:正多边形
各个角都相等,各条边都相等的多边形叫做_____________.
探究多边形的对角线条数
知识点三:多边形的内角和公式推导
1、我们知道三角形的内角和为__________.
2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.
3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?
4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的`和,与同伴交流你的结果.从中你得到什么结论?
探究1:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,?量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。
探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:
(1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.
(2)从六边形的一个顶点出发,可以引_____条对角线,
它们将六边形分为_____个三角形,六边形的内角和等于180°×______.探究3:一般地,怎样求n边形的内角和呢?请填空:
从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.
综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则
n边形的内角和等于______________.
想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
知识点四:多边形的外角和
探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?多边形的外角和定理:。理解与运用
例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
自我检测:
(一)、判断题.
1.当多边形边数增加时,它的内角和也随着增加.()
2.当多边形边数增加时.它的外角和也随着增加.()
3.三角形的外角和与一多边形的外角和相等.()
4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()
5.四边形的四个内角至少有一个角不小于直角.()
(二)、填空题.
1.一个多边形的每一个外角都等于30°,则这个多边形为
2.一个多边形的每个内角都等于135°,则这个多边形为
3.内角和等于外角和的多边形是边形.
4.内角和为1440°的多边形是
5.若多边形内角和等于外角和的3倍,则这个多边形是边形.
6.五边形的对角线有
7.一个多边形的内角和为4320°,则它的边数为
8.多边形每个内角都相等,内角和为720°,则它的每一个外角为
9.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠.
10.四边形的四个内角中,直角最多有个,钝角最多有锐角最
(三)解答题
1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?
2、在每个内角都相等的多边形中,若一个外角是它相邻内角的则这个多边形是几边形?
3、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。
4、一个多边形的每一个内角都等于其相等外角的
5.一个多边形少一个内角的度数和为2300°.
(1)求它的边数;(2)求少的那个内角的度数.
一、学习与导学目标:
知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;
过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;
情感态度:通过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
A、准备活动:
1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
B、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)
3、从上述意义上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
C、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?
4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2
活动引例应用举例中的4(学生练习),5
概念
四、练习与拓展选题:
1、教科书P18/3;
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
课题应用举例中的2
活动引例应用举例中的4(学生练习)
概念
一、 学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、 课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a. 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
b. -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
c. 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)= 同号得
(-)×(+)= 异号得
(+)×(-)= 异号得
(-)×(-)= 同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做 P76 练习1(1)(3),教师评析。
(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、 讨论对比,使学生知识系统化。
有理数乘法有理数加法同号得正取相同的符号把绝对值相乘(-2)×(-3)=6把绝对值相加(-2)+(-3)=-5异号得负取绝对值大的加数的符号把绝对值相乘(-2)×3= -6(-2)+3=1用较大的绝对值减小的绝对值任何数与零得零得任何数5、 分层作业,巩固提高。
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨。B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
【教学目标】
1、理解同类项、合并同类项的概念。
2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3、感受其中的`“数式通性”和类比的数学思想。
【教学重点】
理解同类项的概念;掌握合并同类项法则。
【教学难点】
正确运用法则及运算律合并同类项。
【教学过程】
一、知识链接
1、运用运算律计算下列各题。
①6×20+3×20=②6×(-20)+3×(-20)=
2、口答。
8个人+5个人=8只羊+5只羊=
8个人+5只羊=
[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]
二、探究新知
探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?
(1)请列式表示:,你能对上式进行化简计算吗?
(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]
探究二:根据以上式子的运算,化简下列式子。
①100t-252t②3x2+2x2
②3ab2-4ab2④2m2n3-5m2n3
(1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点,有何规律?
[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]
三、例题精炼
例1、合并同类项。
4x2+2x+7+3x-8x2-2
例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。
[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]
四、课堂小结
这节课你学到了哪些知识?
[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]
五、课堂检测(略)
[意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]