作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。既然教案这么重要,那到底该怎么写一篇优质的教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
教学目标
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
教学过程
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换。(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法。提问:给出x的值,计算y的值时,y的�
作业布置
本章的课后的方程式巩固提高练习。
一年级数学教案人教版1
左和右
教学目标:
1、通过游戏,认识自己身上的左右位置。
2、通过观察、讨论、交流,知道以自我为参照中心的左右位置。
3、通过观察,小组合作讨论,辨析,实践活动,能说出以其他物体为参照中心的左右位置。
4、感知生活中处处有数学,并对学生进行安全教育。
教学重点、难点:
从以自我为参照中心确定左右位置过渡到以其他物体为参照中心确定左右位置。
教学准备:
多媒体
教学过程:
一、游戏引入,激发兴趣
师:在今天上课之前老师先请小朋友们放松一下,请大家听一段音乐。
师:刚才我们跳舞的时候,出现了两个方位词,小朋友听出来了么?(左和右)
师:对!今天我们将学习有关左与右的知识。
出示课题:左和右(注意左、右的写法)
二、共同探讨,获取新知
1、用左右手引入,感知自身的左与右。
师:这个小朋友在吃饭,你们能告诉老师哪只是左手,哪只是右手?(拿调羹的是右手,拿碗的是左手)。
师:你们平时习惯用哪只手拿调羹的?请举起这只手。(学生举手)
师:其实在我们的生活中,大多数人和你们一样习惯用这只手拿调羹,我们就称这只手为右手(贴上粘纸“右”)。所以和右手同方向的这一边就叫做右边,这只脚就是右脚。
师:这只手是右手,那另一只手就是左手(贴上粘纸“左”)。所以和左手同方向的这一边就叫做左边,这只脚就是左脚。
师:我们现在能分清楚左手、右手,左脚、右脚。小朋友再看一看自己的身体,还有像这样的左与右吗?谁来说说?(要求学生摸着说)
师:我们小朋友已经学会区分左右了,接着老师请小朋友来做一个小游戏。游戏的名字是:听口令做动作。
左拍拍、又拍拍,
向左看、向右看,
左手摸左耳、右手摸右耳,
双手举起来,耶。
师:小朋友真聪明,现在老师这里有些图片。图片上面是我们小朋友身上的某些部分,你知道它们是左边还是右边吗?
小结:将自身的位置调整到与照片中的位置相同,再判断。
2、结合具体场景,进一步理解以自我为参照中心左与右的位置关系。
师:小朋友们真聪明!今天来了很多老师,他们对你们不是很熟悉,你们能帮陈老师介绍一下自己的同学吗?不过在介绍之前老师也对小朋友们提一个小小的要求那就是你要告诉我:我的左边是谁?我的右边是谁。(学生介绍)
师:(请一名学生的左边同学站起来)
3、认识以其他物体为参照中心的左与右
(1)、出示P47的题1
师:小朋友们介绍得真不错,你们已经认识了左与右,我们现在到大街上去瞧一瞧!
师:大街上来来往往的车辆和行人真多,真热闹啊!我们在过马路时要注意什么?
小结:过马路,要安全,先看左,再看右。(板书)
(2)、出示P47的题2
师:小丁丁想过马路,他先看看左,再看看右。他向左看到了什么?向右看到了什么?
请个别同学回答。
(4)、出示P47的题3
师:这时,小巧也准备过马路。那么,她向左看到了什么?向右看到了什么?
独立完成后核对。
师:今天我们一起学习了“左与右”,知道在我们的生活中会经常碰到左与右。比如上课时,我们举右手;上下楼梯时要靠右走。如今世博会就要在上海举行了,我们要遵守世博礼仪,其中有一条就规定,乘坐自动扶梯时,要左行右立。只有遵守世博礼仪,我们才是讲文明的小公民。
三、通过游戏,巩固新知
1、说一说。
师:小丁丁跟着妈妈去超市购物,他们来到了文具柜台。呵!那么多玩具,挑选什么呢?妈妈规定只能买一样,并且不能说出它的名字,只能说出它的左、右邻居各是谁。小朋友,如果你是小丁丁胖,你会怎么说呢?其他小朋友能根据他的说法,猜出他想买的是什么吗?
2、摆一摆。
(1)师:把数学书摆在课桌的中间,把文具盒摆在数学书的右边,把铅笔摆在文具盒的右边,把学具盒摆在数学书的左边,把橡皮摆在学具盒的左边。
(2)让学生说一说,摆在最左边的是什么,摆在最右边的是什么。从左数,文具盒是第几个,从右数,文具盒是第几个。数学书的左边有什么,右边有什么。
3、跳一跳
出示:《分清左右》:向左拍拍,向右拍拍,向左拍拍,向右拍拍,左手跳舞,右手跳舞,左手、右手分得清楚。
板书:左与右
过马路,要安全,
先看左,再看右。
一年级数学教案人教版2
教学目标:
1、从数铅笔的具体情境中认识百以内的数,体验数量与物体的对应关系。
2、会数、会读百以内的数,还能根据一定的规律数数。
3、体会数位、基数、序数的意义。
教学重点:
数数、读数。
教学难点:
有规律的数数。
教学过程:
一、情境创设,激发兴趣
1、小朋友刚过了一个愉快的新年,大家都到长辈那儿拜年,你在春节里有什么收获吗?
2、今天,老师也准备了一些礼物要送给大家,看……(出示铅笔)一共有多少支铅笔呢?
二、数数、读数
1、我们来数一数,说说你是怎样数的?
2、学生活动:
(1)一支一支地数、两支两支地数、五支五支地数。
(2)把10支捆成一捆,一捆一捆地数。
明确10个十是100。
(3)活动时让学生自己动手,分不同的形式数)
3、圈一圈,数一数。(第2页)并说说是怎么数的。
4、在下面各数的后面连续数出5个数来。
二十三、五十六、七十七、八十五、九十五
5、读数、拨数。
师写出一个数,生读,并在计数器上拨出来,说说是怎么拨的,表示什么。如43,十位上拨4,表示4个十;各位上拨3,表示3个一。
三、练一练
1、数数(顺数、倒数)
2、看谁数得快。(第3页)
主要让学生明白十个十个数的方法。
3、接力赛。(第3页)
四、课外活动
数一数自己小组同学的铅笔一共有几支。
一年级数学教案人教版3
教学目标:
1、通过“数豆子”的实践活动,初步培养学生的估算意识。
2、在“数豆子”的操作活动中体会物体与数量的对应关系,体验数的实际意义。
3、会写百以内的数,进一步体会数位、基数、序数的意义。
教学重点:
通过不同的活动理解位值意义。
教学难点:
位值意义。
教学过程:
一、情境创设
1、出示一杯豆子(内装28粒)。
2、请学生估计一下有多少粒。
3、师生共同先数10粒放入另一杯子中,再估计一下。
4、谁估计得比较正确呢?为什么?我们来数一数吧。
二、数豆子
1、指名几生来数,其他学生跟着数。
(用不同的方法数)
三、知识学习
1、智慧老人:这个数怎么拨?怎么写?
2、学生试一试,说说怎么拨,怎么写。(每个学生在计数器上拨,在纸上写,再指名拨、写)
3、小组合作:说说这个数的各数位上数的意义。
4、汇报交流。
5、小结:十位上的数表示几个十,个位上的数表示几个一。
6、摆一摆。摆出26根小棒,说说是怎么摆的。
7、讨论:22的这两个“2”的意义一样吗?
8、交流。
四、巩固练习
1、写出计数器上表示的数,并说说意义。(第4页)
2、填空(第5页)
补充:根据老师的表述写数。如:6个十和3个一是。
3、看计数器写数。(第3题)
4、写门牌号,理解序数的意义。(第4题)
5、游戏:抓小棒,先估计有多少根,再数一数,说一说有几个十和几个一。
一年级数学教案人教版
一、知识与技能
1、能灵活列反比例函数表达式解决一些实际问题、
2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题、
二、过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题、
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力、
三、情感态度与价值观
1、积极参与交流,并积极发表意见、
2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具、
教学重点
掌握从物理问题中建构反比例函数模型、
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想、
教具准备
多媒体课件、
教学过程
一、创设问题情境,引入新课
活动1
问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用、下面的例子就是其中之一、
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培、
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值、
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力、
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用、
教师应给“学困生”一点物理学知识的引导、
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值、
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5,所以k=10,∴I=10R、
(2)当I=0.5时,R=10I=100.5=20(欧姆)、
师:很好!“给我一个支点,我可以把地球撬动、”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?
生:这是古希腊科学家阿基米德的名言、
师:是的、公元前3世纪,古希腊科学家阿基米德发现了著名的`“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子、
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0、5米、
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系、因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用、
师生行为:
先由学生根据“杠杆定律”解决上述问题、
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系、
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣、
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题、
生:解:(1)根据“杠杆定律”有
Fl=1200×0.5、得F=600l
当l=1.5时,F=6001.5=400、
因此,撬动石头至少需要400牛顿的力、
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,l=600F、
当F=400×12=200时,l=600200=3、
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米、
生:也可用不等式来解,如下:
Fl=600,F=600l、
而F≤400×12=200时、
600l ≤200
l≥3、
所以l-1.5≥3-1.5=1.5、
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米、
生:还可由函数图象,利用反比例函数的性质求出、
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力、
师:其实反比例函数在实际运用中非常广泛、例如在解决经济预算问题中的应用、
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0、4)元成反比例、又当x=0、65元时,y=0.8、(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题、
师生行为:
由学生先独立思考,然后小组内讨论完成、
教师应给予“学困生”以一定的帮助、
生:解:(1)∵y与x-0、4成反比例,∴设y=kx-0.4 (k≠0)、
把x=0.65,y=0.8代入y=kx-0.4,得
k0.65-0.4=0.8、
解得k=0.2,∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本、
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值、
设计意图:
进一步体现物理和反比例函数的关系、
师生行为
由学生独立完成,教师讲评、
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系、
生:V和ρ的反比例函数关系为:V=990ρ、
生:当ρ=1.1kg/m3根据V=990ρ,得
V=990ρ=9901.1=900(m3)、
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3、
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得、
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性、
师生行为:
学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流、
教师组织学生小结、
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础、用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系、
板书设计
略
生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。
侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。
底面:棱柱有上、下两个底面,形状相同。
侧面:棱柱的侧面都是平行四边形。
立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。
棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。
特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。
圆柱:上、下两个面都是圆形,侧面展开图是长方形。
圆锥:底面是圆形,侧面展开图是扇形。
截面:用一个平面去截一个几何体,截出的面。
球:用一个平面去截,截面图形是圆形。
正方体的截面:可以是正方形、长方形、梯形、三角形。
圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。
展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。
从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的`项(3x与4x)和不含字母的常数项(20与-25)、
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的。解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本、这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1、找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3、列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4、找相等关系:
这批书的总数是一个定值,表示它的两个等式相等、(学生回答,教师追问)
教学目标:
1.巩固对常见平面图的认识,初步体验平面图形之间的关系。
2.发展幼儿创造力思维灵活性和动手操作能力。
3.初步认识了解公用边,知道公用边的特征及含义。
教学准备:
PPT、美工垫、雪糕棒
教学过程:
一、导入活动:巩固对常见平面图形的认识。
播放PPT 第1页请幼儿观看,这是什么呀?今天老师要给小朋友变个魔术,小朋友可要看仔细哦。
二、讲解“公用边”
1.播放PPT第2---3页,老师拿掉一根雪糕棒还有几根雪糕棒?你们信不信用5根雪糕棒也能拼搭出两个三角形,我要变了,你们可要看清楚哦?
2播放PPT第4-6页。成功了吗?我用5根雪糕棒也拼搭出了两个三角形,咦?奇怪了,同样是两个三角形,为什么前面我用了6根雪糕棒,而现在我只用了5根雪糕棒也能搭出两个三角形?(引导幼儿说出两个图形都用到中间的一根雪糕棒)
小结:原来这根雪糕棒即是上面三角形的一条边,也是下面三角形的一条边,两个三角形都用到了这条边,(教案出自:屈老师教案网)我们就把这条两个图形都用到的边叫做“公用边”。
三、创设情境,引发幼儿对闯关游戏的兴趣,启发幼儿用雪糕棒拼搭出图形,感知图形公用边的特征。
1.播放PPT电话声音,教师模仿接电话,告知电话内容,引入闯关游戏。
2.引导幼儿用公用边的方法拼搭出要求的图形,进行闯关游戏。
第一关:播放PPT第7---10页,引导幼儿用6根雪糕棒,用公用边的方法拼搭出一个三角形,和一个正方形,并找出它们的公用边。
3.幼儿自由操作,教师巡回指导。
4.幼儿展示自己拼搭成果,并找出公用边。
小结:集体观看PPT第11---12页,原来6根雪糕棒可以拼搭出方向不同的图形,而且每个图形都有一条它们的公用边。
第二关:播放PPT第13---14页,引导幼儿用公用边的方法,用最少的雪糕棒拼搭出2个正方形和1个长方形,并找出它们的公用边。
5.幼儿自由操作,教师巡回指导。
6.幼儿展示自己拼搭成果,并找出公用边。
小结:集体观看PPT第15页,引导幼儿感知用最少的雪糕棒拼搭出的每一条边都是长方形和正方形的公用边,这些边共组成了一个长方形和两个正方形。
7.集体观看PPT第16---17页,听音乐《大家一起喜洋洋》与同伴一起高兴的跳舞,体验闯关成功的乐趣。
四、教学延伸。
播放PPT第18页,羊村村长也想考考我们聪明的小朋友给我们小朋友出了一道题,请你回家和爸爸妈妈一起用公用边的方法,用最少的雪糕棒拼搭出5个正方形和3
个三角形。
教学目的:
(一)知识点目标:
1、了解正数和负数在实际生活中的应用。
2、深刻理解正数和负数是反映客观世界中具有相反意义的理。
3、进一步理解0的特殊意义。
(二)能力训练目标:
1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2、熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1、认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。
2、下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
课后反思:————
教学目标
1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1庇么数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2庇糜镅孕鹗龃数式2n+10的意义
3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球�
初一数学教案人教版1
一、学习目标:1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点:
重 点: 多项式除以单项式的运算法则及其应用
难 点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。
E、多项式除以单项式法则
第三十四学时:14.2.1平方差公式
一、学习目标:1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重 点:平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)× (2)998×1002
导入新课: 计算下列多项式的积。
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
初一数学教案人教版2
一、学习目标:1.完全平方公式的推导及其应用。
2.完全平方公式的几何解释。
二、重点难点:
重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子。每当有孩子到他家做客时,老人都要拿出糖果招待他们。来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍。
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
(1)1022 (2)992
初一数学教案人教版3
一、学习目标:1.添括号法则。
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的。
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则。
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确。
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
第三十七学时:14.3.1用提公因式法分解因式
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式。
三、合作学习:
公因式与提公因式法分解因式的概念。
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤。
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的。
课堂练习
1.写出下列多项式各项的公因式。
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤。:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的。
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
第三十八学时:14.3.2 用“平方差公式”分解因式
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式。
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确。
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、课堂练习教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
初一数学教案人教版4
一、学习目标:
1.使学生会用完全平方公式分解因式。
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点。
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
练一练。下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
初一数学教案人教版5
教学目标
1.等腰三角形的概念。 2.等腰三角形的性质。 3.等腰三角形的概念及性质的应用。
教学重点: 1.等腰三角形的概念及性质。 2.等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数。
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角。
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则 ∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。
初一数学教案人教版
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:
(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。