作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?这里给大家分享一些关于高中数学教案模板范文,方便大家学习。本文是细心的小编帮家人们找到的13篇高中数学教案范文的相关文章,希望对大家有一些参考价值。
组合
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。
组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。
解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步。切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).
三、教法设计
1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系。
2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题。这样既调动了学生学习的积极性,又在编题辨题中澄清了概念。
为了理解排列与组合的概念,建议大家学会画排列与组合的树图。如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:
排列树图
由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
组合树图
由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).
从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图。
学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式。
3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题。
对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播。对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律。对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高。
4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是
这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的。
对定理2,可启发学生从下面问题的讨论得出。从n个不同元素 , ,…, 里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有 的; (3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式。在此基础上引出定理2.
对于 ,和 一样,是一种规定。而学生常常误以为是推算出来的,因此,教学时要讲清楚。
教学设计示例
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题。
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕。
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答。
答案提示:(1)排列;(2)组合。
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题。这节课着重研究组合问题。
设计意图:组合与排列所研究的问题几乎是平行的。上面设计的问题目的是从排列知识中发现并提出新的问题。
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文。
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答。
(教师活动)对照课文,逐一评析。
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识。
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合。如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合。
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题。
(学生活动)倾听、思索、记录。
(教师活动)提出思考问题。
[投影] 与 的关系如何?
(师生活动)共同探讨。求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .
根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票。
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去。
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练。
[字幕]例1 列举从4个元素 中任取2个元素的所有组合。
例2 计算:(1) ;(2) .
(学生活动)板演、示范。
(教师活动)讲评并指出用两种方法计算例2的第2小题。
[字幕]例3 已知 ,求 的所有值。
(学生活动)思考分析。
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择。
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力。
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评。
[课堂练习]课本P99练习第2,5,6题。
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答。
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用。
【点评矫正 交流提高】
(教师活动)依照学生的板演,给予指正并总结。
补充练习答案:
1.解:原式:
2.解:由题设得
整理化简得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小结:
1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证。
2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件。
(学生活动)交流讨论,总结记录。
设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实。
(三)小结
(师生活动)共同小结。
本节主要内容有
1.组合概念。
2.组合数计算的两个公式。
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题。
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力。
作业参考答案
2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人。
3.能组成 (注意不能用 点为顶点)个四边形, 个三角形。
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解。
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法。
甲拿丙制作的贺卡时,则贺卡有3种分配方法。
甲拿丁制作的贺卡时,则贺卡有3种分配方法。
由加法原理得,贺卡分配方法有3+3+3=9种。
解法二 可从利用排列数和组合数公式角度来考虑。这时还存在正向与逆向两种思考途径。
正向思考,即从满足题设条件出发,分步完成分配。先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法。根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法。不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法。
(2)设集合 ,如果S中元素的一个排列 满足 ,则称该排列为S的一个错位排列。本例就属错位排列问题。如将S的所有错位排列数记为 ,则 有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):
①
②
③
高中数学教案参考1
如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
第一,用多变的课堂教学,充分调动学生的主动性
我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。
若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。
如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?
如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况
有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。
如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国� ”从而激发了学生探索相似三角形的其它性质的兴趣。
我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。
我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。
第二,布置多样的作业,引导学生的用心性
让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。
课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。
对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。
根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。
高中数学教案参考2
上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:
一、认真备课,做到既备学生又备教材与备教法。
上学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。
二、增强上课技能,提高教学质量。
增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简单,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。
三、虚心向其他老师学习,在教学上做到有疑必问。
在每个章节的学习上都用心征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的意见,改善教学工作。
四、认真批改作业、布置作业有针对性,有层次性。
作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改及时、认真,并分析学生的作业状况,将他们在作业过程出现的问题及时评讲,并针对反映出的状况及时改善自己的教学方法,做到有的放矢。
然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,用心向老老师学习以提高自己的教学水平。
以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自己的水平。
高中数学教案参考3
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能:
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点。
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
㈠创设情境、引入新课
情境1:假设� (引入课题)
「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。
情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。
㈡操作实践、了解新知
教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。
「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。
问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?
思考:随着模拟次数的不同,结果是否有区别,为什么?
「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。
问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?
(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?
「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。
问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?
(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?
「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;
⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。
㈢讲练结合、巩固新知
问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?
问1:能用古典概型的计算公式求解吗?
你能说明一下这为什么不是古典概型吗?
问2:你如何模拟每一天下雨的概率为40?
「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。
⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。
归纳步骤:第一步,设计概率模型;
第二步,进行模拟试验;
方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;
方法二:(随机模拟方法--计算机模拟)
第三步,统计试验的结果。
课堂检测将一枚质地均匀的硬币连掷三次,出现“2个正面朝上、1个反面朝上”和“1个正面朝上、2个反面朝上”的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。
「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。
㈣归纳小结
(1)你能归纳利用随机模拟方法估计概率的步骤吗?
(2)你能体会到随机模拟的优势吗?请举例说说。
「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。
㈤布置练习:
课本练习3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
[内容结束]
高中数学教案参考
教学目标
1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3、培养学生观察、归纳能力。
教学重点
1、 等差数列的概念;
2、 等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:
(V)课后作业
一、课本P118习题3.2 1,2
二、1.预习内容:课本P116例2P117例4
2、预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
【教学目标】
1、 知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、 过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3、情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。
【学情分析】
对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。
【重点难点】
重点:圆的标准方程和圆的标准方程特点的明确。
难点:会根据不同的条件写出圆的标准方程。
【教学过程】
第一学时 评论(0) 教学目标
教学活动 活动1【导入】新闻联播片段
请结合数学中圆知识,谈谈你对这句话的理解?
活动2【讲授】问题1.
在直角坐标系中,以A (a,b)为圆心,r为半径的圆上的动点M(x,y) 满足怎样的关系式?
活动3【活动】想一想!
圆心在坐标原点,半径长为r的圆的方程是什么?
活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:
(x-2)2 +y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6个可以化为圆的标准方程。
活动5【活动】再试一下!
圆(x1)2+(ay2)2=1a 的圆心坐标和半径分别是什么?
答案:圆心坐标为(1,—2),半径是 √2
活动6【活动】问题2.
要写出圆的标准方程,只需知道圆的哪些量?
怎样判断一点是否在一个圆上?
学生回答,教师点评。
活动7【活动】例1
写出圆心为A(2, -3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1) 是否在这个圆上。
学生回答,教师点评后,学生阅读教科书上本题解法。
活动8【活动】探究
你能判断点M2在圆内还是在圆外吗?
学生回答,教师点评。
点与圆心距离比半径大等价于点在圆外。
点与圆心距离比半径小等价于点在圆内。
点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。
活动9【讲授】解题收获
1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。
2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!
例2 △ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2, -8),求它的外接圆的方程。
师:△ABC的外接圆的圆心简称什么?
学生回答
师:△ABC的外心是什么的交点?
学生回答
师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。
学生阅读教材例2解法。
师:提示:方程组中
(1) (2)得到什么?
(1) (3)得到什么?
然后,怎样就可以求出圆心坐标和半径。
活动11【讲授】解题收获
先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。
活动12【活动】动手折一折
请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?
学生回答过程。
把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。
师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。
活动13【活动】Let’s try
例3 已知圆心为C的圆经过点A(1,1)和B(2, -2),且圆心C在直线m:x - y+1=0 上,求圆心为C的圆的标准方程。
由学生阅读例3,学生总结解题步骤。
活动14【讲授】解题收获
由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。
活动15【活动】小结
一个方程
三种方法
一种思想
活动16【讲授】作业布置
作业:教材P124习题A组第2题和第3题。
课下探究:
(1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多, 请试着找出来,并和其他同学交流。
(2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?
活动17【导入】结束语
圆心半径确定圆,
待定系数很普遍;
大家站在同一圆,
彰和谐平等友善;
半径就像无形线,
把大家心聚一点;
垂直平分折中线,
就能折出同心愿;
中国腾飞之梦圆。
活动18【测试】课堂测试
1.圆C:(x2)2+(y+1)2=3 的圆心坐标为( )
A(2,1) B(2,—1) C(—2,1) D(—2,—1)
2.以原点为圆心,2为半径的圆的标准方程是( )
A x2+y2=2 B x2+y2=4
C (x2)2+(y2)2=8 D x2+y2=√2
3 圆心为(1,1)且与直线x+y=4 相切的圆的方程是( )
A (x1)2+(y1)2=2 B (x1)2+(y1)2=4
C (x+1)2+(y+1)2=2 D (x+1)2+(y+1)2=4
4 圆A:(ax+2)2+y2=a+3 ,则此圆的半径为______________。
5 已知一个圆的圆心在点C(—3,—4),且经过原点。
(1)求该圆的标准方程;
(2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。
6. 已知△AOB的顶点坐标分别是A(8,0), B(0,6),O(0,0),求△AOB外接圆的方程。
7 求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0 上的圆方程
参考答案:1 B 2 B 3 A 4 2或√2
5 (1) (x+3)2+(y+4)2=25
(2)M在圆内,N在圆上,P在圆外。
6 (x4)2+(y3)2=25 。
7 (x1)2+(y1)2=4
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的`关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问
已知圆心为(1,—2)、半径为2的圆的方程是什么?
【教学目标】
1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2、能根据几何结构特征对空间物体进行分类。
3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1、情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2、展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。有两个面互相平行;其余各面都是平行四边形;每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱�
4、质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案AB
6、课堂检测:
课本P8,习题1.1A组第1题。
7、归纳整理
由学生整理学习了哪些内容
一。说教材
地位及重要性
函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
教学目标
(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;
(2)了解能用图形语言正确表述具有单调性的函数的图象特征;
(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;
(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
教学重难点
重点是对函数单调性的有关概念的本质理解。
难点是利用函数单调性的概念证明或判断具体函数的单调性。
二。说教法
根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三。说学法
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
四。说过程
通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。
设置问题情景
[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。
写出y与x的函数表达式;
求(1)中函数的值。
(用多媒体出示问题,并让学生思考)
通过问题情景的设置主要是为了达到以下两个目的:
⑴第一问为了复习回顾函数的表达式;
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合G
四、小结:本节课学习了以下内容:
1、集合的有关概念:(集合、元素、属于、不属于)
2、集合元素的性质:确定性,互异性,无序性
3、常用数集的定义及记法
教学准备
教学目标
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的`正、余弦公式,能用公式解决相关问题。
教学重难点
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程
复习
两角差的余弦公式
用- B代替B看看有什么结果?
提出问题:
新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。
教材中的地位:
本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。
设计背景:
在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。
教学目标:
一、知识:
理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。
二、过程与方法:
由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。
三、能力:
1、通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。
2、通过对指数函数的研究,使学生能把握函数研究的基本方法。
教学过程:
由实际问题引入:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?
分裂次数与细胞个数
1,2;2,2×2=22;3,2×2×2=23;x,2×2×……×2=2x
归纳:y=2x
问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?
经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=
寻找异同:
你能从以上的两个例子中得到的关系式里找到什么异同点吗?
共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。
那么,今天我们来学习新的一个基本函数:指数函数
得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。
在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一
般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。
若a
若a=1,则=1,是一个常量,也没有研究的必要。
所以有规定且a>0且a≠1。
由定义,我们可以对指数函数有一初步熟悉。
进一步理解函数的定义:
指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。
研究函数的途径:由函数的图像的性质,从形与数两方面研究。
学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。
首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。
我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。
要求学生描述出指数函数图像的特征,并试着描述出性质。
数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。
虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。
教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。
高中数学优秀教学设计 篇12
教学目标
1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3、培养学生观察、归纳能力。
教学重点
1、 等差数列的概念;
2、 等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式 (n≥1)
推导出公式:(V)课后作业
一、课本P118习题3.2 1,2
二、1.预习内容:课本P116例2P117例4
2、预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
教学准备
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.
例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{com},使得{com}是一个公比为2的等比数列,若能请指出{com}中的第k项是等差数列中的第几项?
(本题为开放题,没有唯一的答案,如对于{com}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{com}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)
1、小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、作业:
P129:1,2,3
思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{com},{com}是一个公比为2的等比数列,请指出{com}中的第k项是等差数列中的第几项?
教学设计说明:
1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、教学设计过程:本节课主要从以下几个方面展开:
1)通过复习等差数列的定义,类比得出等比数列的定义;
2)等比数列的通项公式的推导;
3)等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
一、本模块的内容与地位作用
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。立体几何是几何学的重要组成部分。为了使学生能够从现实世界中的具体实物抽象出几何图形,建立点、直线和平面的概念,培养他们的空间观念和想象能力,以及运用这些几何知识解决问题的能力,《普通高中数学课程标准(实验稿)》把立体几何的教学分成两部分。第一部分是在必修课程的立体几何初步中,将从现实世界中具体实物的整体观察入手,认识最基本的空间几何图形(柱、锥、台、球)及其直观图的画法,并了解这些简单几何体的表面积与体积的计算方法。然后,再以长方体为载体,直观认识和理解空间点、直线、平面的概念及其相互位置关系;通过直观感知、操作确认、思辨论证,认识和理解有关直线和平面平行、垂直的性质与判定,论证一些有关空间直线和平面位置关系的简单命题。第二部分是在选修课程的系列2-1中,与空间中向量的学习相结合,进一步论证和解决一些有关空间图形的位置关系和度量问题。
本册教科书的第一章,通过较多的实例,引导学生观察自己身边现实世界中的建筑和实际物体,认识它们都是由柱、锥、台、球及其简单组合体构成的立体图形,并引导学生认识柱、锥、台、球的结构特征,让学生能够运用这些特征去描述现实生活中简单物体的结构。在这一章中,还要求学生学习绘制简单空间图形的三视图和直观图,了解柱、锥、台、球的表面积和体积计算公式,目的是为了帮助学生进一步发展空间观念和想象能力,画图的要求不像学习机械制图那样严格,计算公式也不要求学生记忆。
在第二章中,改变了以往教学立体几何的顺序,没有从抽象的概念出发,推导点、直线和平面的相互位置关系,而是借助直观具体的实物或长方体模型,让学生通过一系列的实际活动,直观感知、操作确认、思辩论证,认识点、直线和平面的垂直与平行等相互位置关系。使学生经历了从直观到抽象,从特殊到一般的学习过程,既学习了立体几何的知识,发展空间观念,又循序渐进地培养了学生的抽象思维和逻辑推理能力。
解析几何是通过坐标系,把几何中的点与代数的基本研究对象(有序数对)对应,建立图形(曲线)与方程的对应,从而把几何与代数紧密结合起来,用代数方法解决几何问题。这是数学的重大进步。《普通高中数学课程标准(实验稿)》在必修课程的解析几何初步中,教学在平面直角坐标系中,建立直线的代数方程和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力,并要求学生初步了解空间直角坐标系。
本册教科书的第三章,从平面上确定直线的几何要素入手,认识到由平面上的一个点和一个方向(用倾斜角的斜率表示),或者是平面上的两个点(等同于一个点和一个方向),就可以确定一条直线,再依据两条直线方程的斜率,判定它们是否平行或相互垂直。接着引导学生推导出平面上直线的方程,从点斜式、两点式到一般式,并说明在平面直角坐标系中,一切直线的方程都是二元一次方程,二元一次方程表示一条直线。在这一章中,还通过点的坐标和直线的方程,研究了两点之间的距离公式,以及点到直线的距离公式。由此,使学生初步学会运用代数的方法解决一些平面几何问题。
本册教科书的第四章,从平面上确定一个圆的几何要素入手,引导学生运用代数的语言描述圆,得到圆心为C(a,b),半径为r的圆的标准方程(x-a)2 + (y-b)2 = r2,然后再对其变形,得到圆的一般方程。然后在前一章的基础上,引导学生学习运用直线和圆的方程,研究直线与圆的位置关系,并解决一些有关的平面几何问题,使学生体会运用代数方法解决几何问题的思想。最后这一章还向学生介绍了空间直角坐标�
二、编写中考虑的几个问题
1.立体几何的内容安排,遵循从整体到局部、具体到抽象的原则。先从现实生活中的实物讲空间几何体,再从空间几何体的整体结构,讲构成空间几何体的点、直线、平面之间的位置关系。
与以往教学立体几何的内容体系相比,本册教科书立体几何的内容体系结构有重大改革。以往立体几何教学,常从研究点、直线和平面开始,先讲它们之间的位置关系和有关公理、定理,再研究由它们组成的几何体的结构特征,几何体的体积、表面积等等,基本上是从局部到整体。现在,是先从对空间几何体的整体感受入手,再研究组成空间几何体的点、直线和平面。这种安排有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,适当减轻几何论证的难度,降低立体几何学习入门的门槛,提高学生学习立体几何的兴趣。
第一章和第二章是一个有机的整体,第二章讲完后,可引导学生从点、直线、平面的角度重新认识空间几何体,把握空间几何体的结构特征,对空间几何体的结构特征有更本质的认识。
2.强调几何直观,渗透公理化思想,进行适当的几何推理
立体几何实际上与学生的联系非常密切,很多实物都可以看成是各式各样的空间几何体,这些物体的棱与棱、棱与面、面与面之间的关系,实际上就是直线与直线、直线与平面、平面与平面的位置关系。学习时,一方面要引导学生从生活实际出发,把知识与周围的实物联系起来,另一方面,要引导学生经历从现实的生活中抽象出空间图形的过程,注重探索空间图形位置关系,抽象概括它们的判定与性质。比如,在有关直线、平面平行与垂直判定定理的教学中,要注重引导学生通过观察、操作、有条理的思考和推理等活动,从多种角度认识直线、平面平行与垂直的判定方法;在性质定理的教学中,同样不能忽视学生从实际问题出发,进行探究的过程。要引导学生借助图形直观,通过归纳、类比等合情推理,来探索直线、平面的平行与垂直等性质及其证明,然后再一步步地过渡到比较严格的`证明。
立体几何在构建直观、形象的数学模型方面有其独特作用。图形的直观,不仅为学生感受、理解抽象的概念提供了有力的支撑,而且有助于培养学生的合情推理和演绎推理能力。
欧几里得公理体系把几何与逻辑结合起来,几何就与演绎推理结下了不解之缘,很久以来几何学就成为训练逻辑推理的素材。然而就推理来说,既有合情推理,又有演绎推理,而且从数学自身发展的过程来看,即使演绎推理也并非“几何”所独有,它广泛存在于数学的各个分支中。20世纪80年代以来,国际数学教育对几何推理的要求发生了一些变化,从纯粹的演绎推理转向较少的演绎推理,更多地强调从具体情境或前提出发,进行合情推理;从单纯强调几何的逻辑推理,转向更全面地体现几何的教育价值,特别是几何在发展学生空间观念,以及观察、操作、试验、探索、合情推理等“过程性”方面的教育价值。本册教科书的第一、二两章就特别注意,使学生一步一步地从特殊到一般,从具体到抽象,认识空间直线和平面的位置关系,并在推理过程中逐步渗透公理化思想,养成言必有据的理性思维精神。
3.解析几何的教学贯穿“坐标法”的思想,突出解析几何解决问题的“三部曲”
解析几何的基本思想是“坐标法”。当我们用方程表示直线和圆,运用方程研究直线、圆的的位置关系,研究两条直线的交点、点到直线的距离、两条平行直线之间的距离等问题时,都需要把几何问题代数化,先用方程表示直线和圆,然后再通过代数运算解决有关的位置关系问题。教科书结合大量的例题,突出用坐标方法解决几何问题的“三部曲”:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果“翻译”成几何结论。
4.加强数学知识内容之间的联系,体会数形结合的思想
解析几何的本质是用代数方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要数学思想。对于几何中的直线,我们既从一次函数的角度研究它,又从方程的角度研究它,用数及其运算作为工具,函数与方程对直线进行了定量化描述,使对直线的研究由定性进入到定量。平面直角坐标� 对圆的研究,也体现了数学知识内容之间的联系,以及数形结合的思想。
数形结合中除由“形”到“数”,用“数”研究“形”外,还要注意代数问题的几何背景,即“数”到“形”的方面,如函数图象与直角坐标系x轴的交点,直线的斜率与直线的方向和倾角等等。这也是数形结合的一个重要方面。
三、对教学的几个建议
1.认真把握《普通高级中学数学课程标准(实验)》的教学要求
与以往的立体几何教学要求相比,本册教科书在几何推理证明方面的教学要求大大降低了,削弱了以演绎推理为主要形式的定理证明,减少了定理的数量,删去了大量的几何证明题,淡化了几何证明的技巧,对于直线、平面平行和垂直的判定定理只需通过直观感知、操作确认、思辩论证的方式归纳得出,不进行系统的推理证明。同时大大地加强了对于空间图形的整体认识和把握,从看实物到想图形、再从三视图或直观图到想象空间图形;然后从空间图形的整体,到把握直线与直线、直线与平面、平面与平面的位置关系,更加强调发展学生的空间想象能力,以及联系实际运用几何知识,观察和解决现实世界中有关图形的问题。
在解析几何初步的内容中,应注意结合具体的图形(直线和圆),引导学生探索在平面上确定这些图形的几何要素,推导出它们的代数方程,进而运用方程研究它们在平面上的位置以及相互关系,体会用代数方法解决几何问题的思想。教学中要注意控制难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。比如,义务教育阶段“空间与图形”部分涉及的许多结论都可以用坐标法来加以证明,而义务教育阶段的教学要求现已有所改变。因此,用坐标法证明平面几何题要求不宜过高,适可而止。另外,传统的解析几何内容安排在三角函数后面,而现在安排在三角函数之前。当用到相关三角函数时,只在边空给出提示,让学生作为结论直接使用,不给出证明。例如,,,这些结论放在数学4时补证。
2.承上启下,注意相关知识内容的联系。通过不同数学内容的联系与启发,强调类比、推广、特殊化、化归等思想方法的运用
本册内容的起点是义务教育阶段“空间与图形”的相关知识,特别是“空间几何体”的内容。在《全日制义务教育数学课程标准(实验稿)》“空间与图形”的视图与投影内容中包括:
(1)会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型;
(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;
(3)了解基本几何体与其三视图、展开图(球除外)之间的关系,通过典型实例,知道这种关系在现实生活中的应用(如物体的包装);
(4)通过实例了解中心投影和平行投影。
教学时,应适当回顾上述知识内容,在义务教育阶段学习的基础上,进一步提高对空间几何体的认识。按照“画法”→“算法” →“证法”展开知识内容。
数学2同时是进一步学习数学4中的平面向量,数学5中的解三角形,选修1-1和选修2-1中的圆锥曲线与方程,选修3-1数学史选讲中的部分专题,选修3-3球面上的几何,选修3-5欧拉公式与闭曲面分类,选修3-6三等分角与数域扩充,选修4-1几何证明选讲,选修4-4坐标系与参数方程等几何内容的基础。
在每章“小结”中,利用数学内容的内在联系,使不同的数学内容相互沟通,提高学生对数学的整体认识水平。特别地,在教科书中强调类比、推广、特殊化、化归等思想方法,尽最大可能展示以下常用的逻辑思考方法。给出与本章知识内容联系的逻辑图,让学生从更高、更广的角度认识每章的地位作用。
3.关注现代信息技术的运用
(1)通过现代信息技术,如计算机、网络等展示丰富的图片,让学生感受大量的实物,抽象出空间几何体及其结构特征。
(2)运用现代信息技术和有关软件,制作一些课件,如动态演示空间点、直线、平面之间的位置关系,空间中的平行与垂直关系,等等。
(3)平面解析几何是一门典型的数与形结合的学科,信息技术在加强几何直观,促使数与形结合方面有着特殊的作用。借助信息技术,可以形象、直观地帮助学生认识所研究的曲线。在动态演示中,观察曲线的性质,在直观了解的基础上,寻求形成这些性质的原因以及代数表示。通过对方程的研究,了解曲线与曲线的关系时,运用信息技术,可以进一步验证得到的结果,为抽象的认识增添了形象的支持。在探究点的轨迹时,可以借助信息技术,探究轨迹的形状等等。
4.关注“观察”、“思考”、“探究”以及“阅读与思考”、 “探究与发现”、“信息技术应用”等栏目以及边空的作用
本套教科书在体例结构上有重大改革,增添了许多栏目,教学中要注意发挥边空这些栏目的作用。
问题是创新的关键,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,通过“观察”、“思考”、“探究”等栏目,提出恰当的、对学生数学思维有适度启发的问题,引导学生的思考和探索活动,使他们经历观察、实验、猜测、推理、交流、反思等理性思维的基本过程,切实改进学生的学习方式。
设置“观察与猜想”“阅读与思考”“探究与发现”“信息技术应用”等栏目,为学生提供丰富的具有思想性、实践性、挑战性的,反映数学本质的选学材料,拓展学生的数学活动空间,发展学生“做数学”、“用数学”的意识。
在边空中,用“问号型”图标提出数学知识形成过程中的具体问题,以旁批方式强调重要的数学思想方法或知识点。
教学准备
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:
(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:�