教学计划决定着教学内容总的方向和总的结构,并对有关学校的教学、教育活动,生产劳动和课外活动校外活动等各方面作出全面安排,具体规定一定学校的学科设置、各门学科的教学顺序、教学时数以及各种活动等。读书之法,在循序而渐进,熟读而精思,本页是编辑山仔给大家收集整理的高一数学的教学计划精选12篇,希望对大家有一些参考价值。
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
1.1.1集合的含义与表示约1课时9月1日1.1.2集合间的基本关系约1课时9月4日 | | 9月12日1.1.3集合的基本运算约2课时小结与复习约1课时
1.2.1函数的概念约2课时
1.2.2函数的表示法约2课时9月13日 | | 9月25日1.3.1单调性与最大(小)值约2课时
1.3.2奇偶性约1课时
小结与复习约2课时
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的'函数模型。
5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
2.1.1引言、指数与指数幂的运算约3课时9月27日30日2.1.2指数函数及其性质约3课时10月8日10日2.2.1对数与对数运算约3课时10月11日14日2.2.2对数函数及其性质约3课时10月15日18日2.3幂函数约1课时10月19日24日小结约2课时
第三章函数的应用
1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1方程的根与函数的零点约1课时10月25日3.1.2用二分法求方程的近似解约2课时10月26日27日3.2.1几类不同增长的函数模型约2课时10月30日 | 11月3日3.2.2函数模型的应用实例约2课时小结约1课时
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1、转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2、发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3、详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4、加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
一、上学期教学回顾
高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。
上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。
二、本学期的措施及打算
1、一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。
2、落实每周测试过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。 3.根据学生学力状况进行分层次的培优补差。
三、教学进度安排
周次,学习内容
目标要求
1、 必修4 第一章三角函数:第1至3节
周期,角的推广及表示,弧度制及互化
2、 军训
3、 第4节:正弦函数
单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。
4、 第5节:余弦函数,第6节:正切函数
余弦函数正切函数定义,象限符号,诱导公式,图像及性质
5、 第7节:xAsiny的图像,第8节:同角的基本关系。
图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。
6、 第二章:平面向量:第1节至第2节
向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算
7、 第3节至第5节
数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。
8、 第5节至第7节
数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。
9、 第三章:三角恒等变换:第1节至第2节
两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。
10、 期中考试
期中复习,期中考试。
11、 第三章 第3节:三角函数的简单应用
试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。
12、 五一长假
13、 必修3 第一章:统计。第1节至第5节
统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,
14、 第6节至第9节
样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。
15、 第二章:算法初步:第1节至第3节
基本思想,基本结构及设计,排序问题。
16、 第4节:几种基本语句
条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。
17、 第三章:概率:第1节至第2节
频率,概率,古典概率,概率计算公式。
18、 第2节至第3节
建概率模型,互斥事件,习题课节复习,章节过关测试。
19、 期末复习
20、 期末复习,期末考试
一、高考要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题。
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题。
难点:①抽象函数性质的研究;②二次方程根的`分布。
三、课前训练
1.函数的定义域是 ( D )
(A) (B) (C) (D)
2.函数的反函数为 ( B )
(A) (B)
(C) (D)
3.设则 .
4.设,函数是增函数,则不等式的解集为 (2,3)
四、典型例题
例1 设,则的定义域为 ( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故选B
例2 已知是上的减函数,那么a的取值范围是 ( )
(A) (B) (C) (D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3 函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn。有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生“跳一跳可以摸得着”。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。
例如,高一(下)P26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。
5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。
一、基本状况分析
任教153班与154班两个班,其中153班是文化班有男生51人,22人;154班是美术班有男生23人,21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
二、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改善教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本潜力,着力于培养学生的创新精神,运用数学的意识和潜力,奠定他们终身学习的基础。
三、教学推荐
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、资料和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分资料的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师务必面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的资料和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的资料。组织和加强数学兴趣小组的活动资料,加强对高层次学生的竞赛辅导,培养拔尖人才。
四、教研课题
——高中数学新课程新教法
五、教学进度
第一周集合
第二周函数及其表示
第三周函数的基本性质
第四周指数函数
第五周对数函数
第六周幂函数
第七周函数与方程
第八周函数的应用
第九周期中考试
第十——十一周空间几何体
第十二周点,直线,面之间的位置关系
第十三——十四周直线与平面平行与垂直的判定与性质
第十五——十六周直线与方程
第十八——十九周圆与方程
第二十周期末考试
(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次 时 内 容 重 点、难 点
第1周
9.2~9.6 5 集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念
第2周
9.7~9.13 5 集合的基本运算
函数的概念、
函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20 5 单调性与最值、
奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27 5 指数与指数幂的运算、
指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4 5 (9月月考?、国庆放假)
第6周
10.5~10.11 5 对数与对数运算、
对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25 5 方程的根与函数零点,
二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
高一数学的教学计划精选12篇
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22 5 三角函数的诱导公式
三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27 5 平面向量应用举例,
小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10 5 简单的三角恒等变换
以上就是高一数学教学计划,考生们只要加油努力,就一定会有一片蓝天在等着大家。
本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标、
(一)情意目标
(1)经过分析问题的方法的教学,培养学生的学习的兴趣。
(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)本事要求
1、培养学生记忆本事。
(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。
2、培养学生的运算本事。
(1)经过概率的训练,培养学生的运算本事。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。
(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算本事。
3、培养学生的思维本事。
(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。
(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的本事。
(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
二、教学重点
1、集合、子集、补集、交集、并集、一元二次不等式的解法
四种命题、充分条件和必要条件、
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式、等差数列前n项和公式。
等比数列及其通项公式、等比数列前n项和公式。
三、教学难点
1、四种命题、充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
四、工作措施
抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法。
2.哪些集合表示方法是描述法。
3.将集M、集从集P用图示法表示。
4.分别说出各集合中的元素。
5.将每个集合中的元素与该集合的关系用符号表示出来。将集N中元素3与集M的关系用符号表示出来。
6.集M中元素与集N有何关系。集M中元素与集P有何关系。
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的元素。集M中任何元素都是集P的元素。(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题。
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的。空集也是B的子集,而这个集合中并不含有B中的元素。由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集。
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正。
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立。
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确。空集是任何非空集合的真子集;
(3)不正确。 与 表示同一集合;
(4)不正确。 的所有子集是 ;
(5)正确
(6)不正确。当 时, 与 能同时成立。
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的。补集 可用右图中阴影部分表示。
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示。
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同。
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系。
一、 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 、教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3.1.1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 、教学目标分析:
知识与技能:
1、结合方程根的几何意义,理解函数零点的定义;
2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1、让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3、使学生感受学习、探索发现的乐趣与成功感
教学重点:
函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:
发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 、教学准备
导学案,自主探究,合作学习,电子交互白板。
五 、教学过程设计:
略
六、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
七、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。
本学期继续担任2—7班和2—8班的数学教学工作,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
要立足我校学生实际,在思想上增强学生学习数学的积极性,在知识上侧重双基训练,加强对学生创新思维、知识迁移、归纳拓展、综合运用等能力的培养,全面提高学生的数学素养。全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是重要工作,提高学生的解题能力是重要目标。
二、学生基本情况分析
2—7班和2—8班学生的。数学学习情况一般,学生自觉性不高,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。让学生尽量回归课本,多让学生做题。还有几个月就要水平考试,经过分析还是要注重学生的基础,不要让学生在基础题上失分。教学中要从我校高二理两班学生的认识水平和实际能力出发,及时纠正不合理学习方法,注重培养学生良好的数学思维方法,良好的学习态度和学习习惯,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
三、教材分析
选修2—2共分三章,第一章导数及其应用,第二章推理与证明,第三章空间向量与立体几何。共36个课时。
第一章,通过对大量实例的分析,经历由平均变化率到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想内涵。能利用基本初等函数的导数公式和导数运算法则求简单函数的导数。理解复合函数的定义,掌握复合函数的求导公式。了解函数的单调性与导数的关系。能利用导数研究函数的单调性会求不超过三次的多项式函数的单调区间体会定积分中以曲代直、以不变代变及无限逼近的思想,初步了解定积分的概念和简单性质。掌握定积分的几何意义。
第二章:了解合情推理的含义、结构和基本类型。能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的一般模式,并能运用它们进行一些简单的推理。通过具体实例了解合情推理的演绎推理之间的联系和差异。了解直接证明的两种基本方法:综合法和分析法,并了解它们的思考过程与特点。了解间接证明的一种基本方法——————反证法,并了解它的思考过程与特点。了解数学归纳法的原理。能利用数学归纳法证明一些简单的数学命题。
第三章:了解引进复数的必要性。了解数系扩充的方法。理解复数的基本概念。掌握复数的代数形式及其相关概念。掌握复数的分类。掌握复数的几何意义,了解复数集与平面直角坐标系中的点集、复数集与平面向量的对应关系;理解复平面的概念。掌握复数代数形式的加减运算法则,并能熟练地进行计算。了解两个复数相等的概念,并能利用它处理相关的问题。了解复数加减运算的几何意义,并能进行基本的计算。掌握复数代数形式的乘除运算法则,并能熟练地进行计算。了解共轭复数的概念。
2—3第一章计数原理是数学的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法, 在本章中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。
第二章随机变量及其分布通过具体实例,帮助学生理解取有限值得了离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机变量现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。
第三章在《数学3(必修)》概率统计内容的基础上,通过典型案例进一步介绍回归分析的基本思想、方法以及初步应用;通过典型案例介绍独立性检验的基本思想、方法以及初步应用,使学生认识统计方法在决策中的作用。
4——4第一章坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
第二章参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。
四、教学措施:
(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(2)集中精力打好基础,分项突破难点。所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,抓好尖子生与后进生的辅导工作。
(5)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
五、其他活动:
(1)教研:积极参加学校教研组的活动,参加集体备课,听评课活动,坚持导学案教学,抓好高效课堂。
(2)批改:坚持天天批改,认真做好记录,认真做好考试的批改与分析,让批� 规范学生的作业本,规范作业书写。
(3)培优补差:优等生:姜安鑫。学困生;王欣。课外辅导,利用课余时间,组织学生加以辅导训练。对差生实施多做多练措施。优生适当增加题目难度。采用激励机制,对差生的每一点进步都给予肯定,并鼓励其继续进取,在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。对优生要多给予思想上的帮助,使之树立热爱集体、热心为大家服务的思想,鼓励他们大胆工作,并提供发挥他们想象力、创造性的机会,肯定他们的成绩,让他们把科学的学习方法传给大家,达到全体同学共同进步的目的。课堂教学时尽量把教学的步子放小,把教学内容按由易到难,由简到繁的原则分解成合理的层次,分层推进。师讲课时间控制在分钟,生做练习时多关注差生,针对他们的实际情况提出不同的要求,采取不同的教育措施,争取让问题在课内得到解决,避免课后补课。对在课堂上没有解决的问题,老师帮助补缺。为了补缺补差,我们要利用空堂课、自习课对学习困难学生进行补课。作业要做到区别对待,要让后进生“吃小灶。从数量上照顾,不求数量多,只求准确度,作业可减半。还应积极开展同桌教学,伙伴教学,合作教学,以优带差,帮助他们一起进步。
(4)自培计划:理论素养方面:通过自培和校培的结合,实现个人理论、水平、专业知识水平和实践教育教学能力的进一步提高和创新。
教学水平方面:以先进的教育理念和科学理论为指导,在教育教学的实践中摸索出一套适合数学学科的教法。努力使自己成为一名素质好、师德水平高、专业知识宽厚、具有正确的教育理念和高度的专业精神、富有创新精神和实践能力的教师。
科研能力方面:进一步加强理论学习和教学实践,深入的开展主题教研活动。引导全体教师积极参与教科研,认识教科研的意义,引领全组数学教师用很高的热情投入到教研的工作中来。
六、教学进度:
略
新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下
一,指导思想
加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。
二,教材分析
本册教材具有以下几个明显的特点:
1、为学生的数学学习构筑起点
教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。
2,向学生提供现实,有趣,富有挑战性的学习素材
教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。
3,为学生提供探索,交流的时间与空间
教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。
4,展现数学知识的形成与应用过程
教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。
5,满足不同学生的发展需求
教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。
三,教材的重点和难点
本册教材从内容上看,教学重点是三角形和四边形的性质定理
和判定定理的应用以及一元二次方程的应用。教学难点是对反
比例函数的理解及应用;用试验或模拟试验的方法估计一些复
杂的随机时间发生的概率。
四,教学措施:
1,根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。
2,加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。
3,关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。
4,加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。
五,时间安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函数
6月1日——6月10日频率与概率
6月11日——7月11日复习考试