圆柱的表面积(7篇)

作为一名教学工作者,通常会被要求编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。教学设计应该怎么写才好呢?这次帅气的小编为您整理了圆柱的表面积(7篇),在大家参照的同时,也可以分享一下给您最好的朋友。

《圆柱的表面积》教学设计 篇1

教案背景:

冀教20xx课标版小学数学六年级下册第四单元

教学课题:

圆柱的侧面积。

教材分析:

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

教学目标:

1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

教学重点:圆柱侧面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具准备:圆柱体教具、多媒体课件。

学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

一、复习导入,引入新知

1、复习圆柱体的特征

师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

二、课堂小结

1、本节课你有何收获?

2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

三、课后作业

应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

圆柱的侧面积 =底面周长 ×高→S侧=ch

长方形面积=长×宽

教学反思

这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

一、数学教学要注重数学思想和数学方法的渗透。

在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

二、重视学生的合作意识和实践能力的培养。

在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

三、合理利用现代化教学手段辅助教学。

侧面积计算公式的推导是本届的。难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱的表面积 篇2

教学目标 

1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

教学重点和难点

1.教学重点:推导圆柱体侧面积的计算方法。

2.教学难点 :圆柱体侧面积公式的推导过程。

教学过程 设计

(一)复习准备

师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

生:长方形。

师把长方形贴在黑板上。

师:面积如何求?

生:长方形面积=长×宽。(师板书)

师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

(二)学习新课

1.圆柱体的认识。

师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

生:上、下两个面和周围一个面。

师:上、下两个面是什么形状?它们的面积大小怎样?

生:上、下两个面是圆形,面积相等。

师:我们把圆柱上、下两个面叫做底面。(板书:底面)

师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

生:是一个长方形。

师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

师接着拿出两个高矮不一样的圆柱体。

师问:为什么有高有矮呢?由什么决定的?

生:由高决定的。

师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

师出示投影,让学生指出高。

师:圆柱的高有多少条?

生:无数条。

师:高都相等吗?

生:都相等。

师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

师:我们讲的圆柱体都是直圆柱。

2.圆柱的侧面积。

(1)推导公式。

师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

讨论题目是:

a:这个长方形与圆柱体有哪些关系?

b:你能推导出圆柱体侧面积计算方法吗?

然后学生汇报讨论结果。

生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。

老师板书公式。

(2)利用公式计算。

例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

老师在黑板上板演。

下面同学们进行练习。投影练习题:

①一圆柱底面半径是5厘米,高5厘米,求侧面积。

②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

师:你能知道第③题圆柱侧面展开图是什么图形吗?

3.圆柱的表面积。

师在课题“圆柱”后面接着写“的表面积”。

(1)推导公式。

师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

生汇报讨论结果,老师板书公式:

S表=S侧+2S圆

(2)利用公式计算。

(投影出示)

例2 计算圆柱体的表面积(见下图)。(单位:厘米)

同学说思路,老师板书,注意每一步结果写计量单位。

解 ①侧面积:2×3.14×5×15=471(平方厘米)

②底面积:3.14×52=78.5(平方厘米)

③表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米。

例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

同学说思路,列式。老师把正确的解答用投影打出来。

(1)水桶的侧面积

3.14×20×24=1507.2(平方厘米)

(2)水桶的底面积

3.14×(20÷2)2

=3.14×102

=3.14×100

=314(平方厘米)

(3)需要铁皮

1507.2+314=1821.2≈1900(平方厘米)

答:做这个水桶要用铁皮1900平方厘米。

小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

(三)巩固反馈

(1)看书第54页第1题。

(2)投影,指出下面圆柱体的高是几?

(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

(4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

(6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

思考题:

(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

提示:

课堂教学设计说明

本节课的教学设计分三个层次。

第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。

第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

板书设计 

《圆柱的表面积》数学教案 篇3

圆柱的表面积

教学要求:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的表面积,让学生认识取近似值的进一法。

2、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

3、培养学生的合作意识和主动探求知识的学习品质。

教学重点:掌握圆柱表面积的计算方法。

教学难点:能灵活运用相关知识解决实际问题。

课前准备:

1、教师准备一个圆柱体模型,表面的彩纸可揭开。

2、准备一个自己上节课做的圆柱体。

教学过程:

教学步骤:

教师活动过程

学生活动过程

一、复习引入

1、口答下列问题,只列式不计算。

2、导入新课。

1、复习圆柱体的特征。

1、求下列圆柱体的侧面积。

(1)底面周长是18.84米、高是10米;

(2)底面直径是2厘米、高是1厘米;

(3)底面半径是0.5米、高是1.5米。

2、教师出示圆柱体模型,如果我们在圆体表面贴上彩纸,边说边演示,怎样才能知道需要多少彩纸?根据学生回答,教师板书课题。

1、学生回答

2、学生讨论,然后汇报。

二、教学新课

1、 学习表面积的计算方法

2、教学例2

3、练习

做出第6页第1题

3、教学例3

4、学习“进一法”

1、学生拿出自己上节课做的圆柱体。

2、思考:圆柱体的表面积包括哪几部分?

3、根据学生的回答,教师依次把贴在圆柱体上的彩纸揭开,同时贴在黑板上。

4、请学生说一说怎样计算圆柱体的表面积?

圆柱体的表面积=侧面积+侧面积×2

5、教师出示例2,提名板演,其余学生练习。

6、指名两个板演,其余学生练习。

7、教师提问:在日常生活中你看到的圆柱体是不是都包括两个底面和一个侧面?

8、例3:一个没有盖的圆柱铁皮水桶,高是48厘米、底面直径是30厘米,做这个水桶至少要用铁皮多少平方厘米?(得数保留整百平方厘米数)

着重让学生弄清“无盖”的含义,是求水桶的哪几个面的面积?

9、教师着重说明为什么省略的十位上即使是4或比4小,也都要向前一位进1。

1、学生细心观察自己做的圆柱体,然后讨论。

2、学生交流汇报。

2、 学生分组讨论,讨论后回答:①只有一个底面和一个侧面的;②两个底都没有,只有一个侧面。

5、生讨论,然后独立完成。

6、学生讨论。

7、学生阅读书第5~6页有关内容。

三、巩固练习

1、完成书第6页做一做第2题。

2、口答(只列式不计算)

1、学生独立完成。

2、压路机的前轮是圆柱体,长1.5米、底面周长3.14米,如果每分钟车轮滚20周,每分钟压过的路面是多少平方米?

1、学生练习

2、学生反馈

四、课内总结

五、课内作业

1、课内作业:

书第7页5~7题

2、回家作业:

书第7页第4题,第8题

《圆柱的表面积》教学设计 篇4

课题圆柱的表面积教时一3(3)

学习

目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

学习

重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

过程与方法

教师活动

一、基本练习

二、实际应用

求压路的面积是求什么?

三、实践活动

学生活动

说说计算方法。

说自己的想法,独立解答。

说自己的想法,独立解答。

学生讨论后完成。

学生实际操作。

板书设计

圆柱的表面积教学反思

学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。但是个别学生计算的不准。

课题圆柱的表面积教时一4(4)

学习

目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

学习

重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

过程与方法

教师活动

实际应用

1、

2、

3、

学生活动

指名读题,说出题意以及解题思路,然后指名做出。

结合生活实际进一步明确题意,以便做出。

学生互评互议。

板书设计

圆柱的表面积

圆柱的表面积 = 圆柱的侧面积+底面积×2

教学反思

在实际应用中,简单的问题还能轻松完成。

圆柱的表面积 篇5

教学目标 

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点 

能灵活运用表面积、侧面积的有关知识解决实际问题。

教学过程 

一、复习准备

(一)口答下列各题(只列式不计算).

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征。

二、探究新知

(一)圆柱的侧面积。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。

(二)教学例1.

1.出示例1

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

2.学生独立解答

教师板书: 3.14×0.5×1.8

=1.75×l.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米。

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。

(三).

1.教师说明:圆柱的侧面积加上两个底面积就是。

2.比较圆柱体的表面积和侧面积的区别。

是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

(四)教学例2.

1.出示例2

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答

侧面积:2×3.14×5×15=471(平方厘米)

底面积:3.14× =78.5(平方厘米)

表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。

(五)教学例3.

1.出示例3

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

3.学生解答,教师板书。

水桶的侧面积:3.14×20×24=1507.2(平方厘米)

水桶的底面积:3.14×

=3.14×

=3.14×100

=314(平方厘米)

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

答:做这个水桶要用1900平方厘米。

4.教师说明:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

5.“四舍五入”法与“进一法”有什么不同。

(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

三、课堂小结

这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。在实际应用时要注意什么呢?

归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

四、巩固练习

(一)求出下面各圆柱的侧面积。

1.底面周长是1.6米,高是0.7米

2.底面半径是3.2分米,高是5分米

(二)计算下面各。(单位:厘米)

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

五、课后作业

(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计 

探究活动

面包的截面

活动目的

培养学生的观察能力和操作能力,发展学生的空间观念。

活动题目

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程

1、学生分组讨论。

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论。

3、画出截面图,表示结论,发展空间观念。

参考答案

1、沿水平方向横切一刀,截面是圆形。(如图1)

2、沿垂直方向纵切一刀,截面是一个长方形。(如图2)

3、沿侧面斜切一刀,会形成大小不一的椭圆形。(如图3)

4、从顶面向侧面斜切一刀,会形成椭圆的一部分。(如图4)

5、从上底面斜切一刀到下底面,会形成椭圆的一部分。(如图5)

(图1) (图2) (图3) (图4) (图5)

圆柱的表面积 篇6

【教学内容】p29-30例2,例3,“练一练”练习六3—8。【教学目标】使学生理解圆柱表面积的含义,掌握圆柱表面积的计算方法,能解决一些简单的实际问题。【教学重点】理解含义,掌握算法。【教学难点】联系实际分析计算圆柱的表面积或侧面积。【教学过程】一、复习。1、⑴求下图的表面积:(单位:分米)

⑵如果这是一个无盖的铁皮水桶,做这个水桶至少要多大的铁皮?2、学生练后评讲提问:①什么叫表面积?怎样求它的表面积?如下列式对吗?为什么?(3+2)×2×5+3×2×2②求做水桶要多大的铁皮,注意什么问题?怎样列式?有不同的方法吗?二、探究新知。1、教学圆柱体表面积含义。①讨论:圆柱除了侧面以外,还有几个面?怎样求圆柱的表面积?②学生汇报,教师板书:(结合圆柱的展开的平面图)圆柱的表面积=侧面积+底面积×22、教学例2。①出示例2,自由读题。②学生试做,指名板演。③评讲:先求什么?后求什么?怎样计算?指出:运用公式较多,思路要清,计算过程较繁,计算要准。3、教学例3。自学思考:①题目里告诉我们哪些条件?②要求什么?③  要求至少要用铁皮多少平方厘米?就是求什么?④课本上是分哪几步来计算的?⑤得数保留整百平方厘米数,怎么理解?教师讲解“进一位”意义及其用途。4、比较沟通复习题与例2,例3的联系。三、巩固。1、“练一练”p30。2、说说怎样求下列圆柱物体的表面积。①圆柱形油桶。①  圆柱形通风管道。③无盖的圆柱形水桶。②  圆柱形落水管。3、选择合适的底面的序号填在括号里。(单位:厘米)           12.56    18.84⑴以12.56厘米为高,卷成的圆柱体选(    )作底。⑵以18.84厘米为高,卷成的圆柱体选(    )作底。四、质疑总结。计算圆柱侧面积,表面积。⑴严格审题,弄清题意,把握已知条件。⑵明确步骤,正确列式,细心计算。⑶正确应用取近似值的方法。五、作业。练习六4、7。

圆柱的表面积 篇7

教学过程:

一、检查复习,引入新课

(复习圆柱体的特征)

师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积2+侧面积=表面积

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)

条件:(厘米)      r=3           d=4            c=6.28

底面积(平方厘米)   28.26         12.56            3.14

(三)教学圆柱体侧面积的计算

1、引导探究圆柱体侧面积的计算方法。

(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

(2)小组合作探究。(剪圆柱形纸筒)

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)             h=5       h=8      h=10

侧面积(平方厘米)       94.2      100.48    62.8

(四)教学求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米) 150.72   125.6   69.08

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用

(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?

教学要求:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重点:圆柱表面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

学法指导:采取引导    放手   引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具:圆柱体教具、多媒体课件。

学具:圆柱形纸筒、茶叶桶。

一键复制全文保存为WORD
相关文章