数学作为最烧脑的科目之一,也是要记、要背、要讲练的。那么关于六年级上册的数学知识点都有哪些呢?这里是整理的数学六年级上册教案优秀8篇,希望能够给予您一些参考与帮助。
[教学内容]
教科书第98——99页例2、练习十九第1——3题。
[教材简析]
本节内容是在学生理解分数意义的基础上进行教学的。百分数在生活中有着广泛的应用,现实世界为百分数的学习提供了丰富的学习素材。例1安排了三个层次的学习活动,引导学生逐步理解百分数的意义。第一层次,呈现学校篮球队3名队员在投篮练习中投篮次数和投中次数的统计表,并提出问题,引导学生通过比较表中分数的大小作出判断。第二层次,将表中的几个分数分别改写成分母是100的分数,并比较它们的大小,初步体会百分数的特点和作用。第三层次,在学生初步感知百分数的特点和作用的基础上,揭示百分数的概念,介绍百分数的读、写方法。在“试一试”与练习中进一步完善和理解百分数的意义,初步体会百分数与分数、比之间的联系,初步了解百分率,为进一步学习百分数积累经验。
[教学目标]
1.知识与技能:使学生在现实的情境中,初步理解百分数的意义,会正确地读、写百分数。
2.过程与方法:使学生经历百分数意义的探索过程,体会百分数与分数、比的联系和区别,积累数学活动经验,进一步反站数感。
3.情感、态度与价值观:使学生在用百分数描述和解释生活现象的过程中,体会百分数与生活的密切联系,增强自主探索与合作交流的意识。
[教学重点]
理解百分数的意义,会正确读、写百分数。
[教学难点]
体会百分数与分数、比的联系与区别。
[教具准备]
课件;课前布置学生收集生活中的百分数。
[教学过程]
一、创设情境,导入新知。
谈话:同学们喜欢看篮球赛吗?说到篮球就会让我们想到一个人,你们知道是谁?(姚明)这里有一项关于姚明的数据统计
(出示)
据统计:姚明在nba比赛中的罚球命中率一向很高,前两个赛季罚球命中率高达81%,但上赛季下降到了78.3%。(两个百分数用红色表示)
教师:大家认识红色的数吗?看到这两个数能知道些什么呢?今天我们共同认识这个新朋友,你知道他叫什么名字吗?
(出示课题:认识百分数)
教师:关于百分数的知识,你想了解些什么?
学生说一说自己的看法。
二、例题教学,引出概念。
1.出示例题,引发探究。
例1:学校篮球队组织投篮练习,王老师对其中三名队员的投篮情况进行了统计分析。
教师:我们来看看比赛的数据显示。
(出示表格)
姓名
投篮次数投中次数
16
13李星明25张小华20
吴力军
3018
教师:如果你是教练,根据这张表格里的数据,你能判断出哪个队员投篮的成绩好一些?为什么?
学生独立思考,并在小组中交流想法。
组织学生在班级中进行讨论,学生可能会提出不同的比较方法,如:谁投中的次数多,谁的成绩就好一些;谁失球的次数最少,谁的成绩就好一些;算投中的次数占投篮次数的几分之几(投中的比率),再比较这几个分数,谁大就表示谁的。成绩好一些。
引导学生比较这些方法,并明确最后一种方法是合理的,并在表格的右边增加“投篮的比率”一栏。
2.初步理解百分数的意义。
学生独立计算三名队员投中的比率。
指名报计算结果,教师完成统计表。(出示书上完整的表格)
让学生说一说16/25、13/20、18/35分别表示哪个数量是哪个数量的几分之几。
提问:根据上面的计算结果,你能比较出谁投中的比率高一些?
学生自主探索比较的方法。
组织学生在班级中进行交流,学生的方法可以是把三个分数,先两个两个比较,再确定哪个分数最大,或者先把三个分数一次性通分,再比较大小,也可以把它们都改写成小数再比较大小。
谈话:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。
学生按要求独立进行改写。
指名口答改写的结果,教师板演。
提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?
再让学生说一说65/100、60/100的实际含义。
提问:现在能很快看出谁投中的比率高一些?
学生:张小华投中的比率高一些。
说明:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。
提问:百分数怎样写,怎样读呢?
学生自学课本99页“试一试”上面的内容。
组织学生说一说读法和写法,教师进一步示范64%的读、写法。
提问:百分号相当于分数中的什么部分?用百分号形式写分数,什么变了?什么没变?
学生模仿读一读,写一写。
学生照样子表示出65/100、60/100,先写出来,再读一读。
提问:读百分数时要注意什么?
说明:百分数不读作“一百分之几”,而要读作“百分之几。”
提问:你能说说黑板上百分数是什么意思?(尽量引出投篮命中率为后面的“百分率”作铺垫)教师:请大家在规定的时间里写些自己喜欢的百分数,要求一个比一个写得好。记时开始。(停,时间不是很长)
师:如果老师要求写十个,请用今天学到的知识描述一下你写了几个。
学生1:我写了5个,我完成了50%
学生2:我写了7个,我完成了70%
教师:如果不直接告诉别人,让别人猜猜你写了几个?
学生1:我还有70%没有完成;
学生2:我写好的接近50%;
学生3:
[设计意图:创设学生感兴趣话题入手,根据统计表提出“谁的成绩好一些?”引发学生思考,在交流中认识到通过比较三个分数的大小作出判断,并将分数再分别改写成分母是100的分数,从而初步体会到百分数的特点和作用,揭示百分数的概念,在学生自学基础上讨论百分数的读法和写法。学生自主写喜欢的百分数的环节,让学生再次感受了百分数的意义和作用。]
三、分层练习,加深理解。
“试一试”
指导学生做一做。
第(1)题
引导学生:根据“男生人数是女生的45%,如果把女生人数看作100份,那么男生人数相当于这样的多少份?
指名回答男生人数是女生的几分之几,男生与女生人数的比是几比几?
第(2)题
先让学生说一说近视率的含义是什么,再在书上填一填。
提问:通过解答这两题,谁能说一说对“百分数又叫做百分比或百分率”的理解吗?
学生在小组中交流后,在班级里说一说。
明确:百分数的本质是表示两个数量的倍比关系,因此把百分数又叫做百分比或百分率是合适的。
“练一练”第1题
学生看题,理解题意,独立做一做。
做好,交流填写结果。并具体说一说某个百分数表示的实际含义。
说明:百分数可以表示一个整体中的部分与这个整体的关系。
第2题
教师:在日常生活中,你还见过哪些百分数?
在小组里说一说,并说出这些百分数的含义,再组织学生在班级中交流。
练习十九第1题
同座同学互相读一读,并说出每个百分数的含义。
指名分别说一说每个百分数的含义。
教师:从三幅图中分别能知道些什么?你还能说出一些与100%有关的例子吗?
练习十九第2题
学生独立写一写,写好在小组中交流。
组织学生交流写法,并说一说百分数表示的含义。
教师:分母是一百的分数都可以用百分数表示吗?
练习十九第3题
出示题,让学生试着判断,并说明理由。
明确:百分数只表示两个数量的倍比关系,不用来表示某个具体数量。百分数是一种特殊的分数,后面不带单位名称,而分数既可以表示一个具体的数,又可以表示两个数的比,在表示一个具体的数量时,分数后面可以带单位名称。
四、全课总结。
教师:今天这节课你有什么收获?
教师:一个人的收获不仅来自于1%的灵感,更重要的来自于99%的汗水,如果每一节课同学们都能有一点收获,日积月累你们100%会成为一个学识渊博的人。(出示:成功=99%的汗水+1%的灵感)
教师:你能用百分数来描述你这节课的感受吗?
[设计意图:选择现实的素材,让学生读、写百分数,说百分数的含义,既练习了百分数的读法,又巩固了百分数的意义,还能让学生体会到生活中处处有百分数,感受百分数的应用价值。在练习三的第3题学生通过判断,了解了百分数与分数的区别,再次加深对百分数意义的理解。课的结束前学生用百分数描述学习的感受,检验了学生对百分数意义的理解和体会。]
课后反思:
《百分数的意义》是第九单元的第一课时,本课的教学重点之一是理解百分数的意义,教学难点是体会百分数、分数、比的联系与区别。
借助例题的学习,我先出示了三名运动员的投篮情况的统计表,统计表中呈现的是每一名运动员投篮次数和投中次数,然后请学生思考:如果你是教练,怎样判断哪名运动员的投篮成绩好些?学生们经过思考马上想出了办法,交流时即刻有学生说出应该通过比较每人投中次数占投篮次数的几分之几来比较。此时,我立即追问学生为什么,学生们联系以前学习的知识说出了理由:因为每一名运动员投篮次数不相同,不能只看投中次数来判断成绩的好坏。应该说这一部分的导入是相当顺利的。
课前我还布置学生去生活中收集一些百分数,所以课上让学生进行了交流。有些学生找到了衣服商标上的百分数,如:100%羊毛;97.4%棉;葡萄汁70%等。为了帮助学生更好地理解百分数的意义,我请学生们同桌之间先互相说说收集到的这些百分数表示什么意思,然后再请几位学生全班交流,应该说课堂上的学习氛围较好,学生们通过寻找生活中的百分数体会到百分数在生活中的运用,也能更好地理解百分数的意义。
上完本课后觉得不足之处是对于百分数与分数的区别仅仅借助练习十九的第三题是不够的,很多学生还是不理解两者的区别。我想在第二课时中要想办法解决这一问题。
教学内容
苏教版九年义务教育六年制小学数学第十册第73~75页。
教学目标
1.在初步认识分数的基础上,经历动手操作、自主探索、合作交流的过程,进一步理解分数的意义;弄清分子、分母、分数单位的含义;掌握分数的读写方法。
2.培养初步的观察能力、动手操作能力、抽象概括能力和与同伴合作学习的意识。
教学过程
一、创设情境,温故知新
1.创设猜谜情境。
师:用以下成语各打一个数。
一分为二(1/2)百里挑一(1/100)
七上八下(7/8)十拿九稳(9/10)
[反思:以有趣的猜谜引入,增添了教学情趣,拓宽了学生视域,体现了学科之间的联系。]
2.寻找认知起点。
师:(指1/2、1/100、7/8、9/10)这些都是什么数?除了这几个分数,你还知道其他的分数吗?请你在纸上写一个分数,并读给同桌听。
师:你已经知道了哪些有关分数的知识?
大多数学生知道分数各部分的名称,并且会读、写分数,有的学生还会计算同分母分数加减法,知道真分数和假分数。
师:你还想知道什么?
根据学生发言,揭示今天学习的内容:分数的意义。(板书课题)
[反思:通过简短的师生对话,摸清了学生的已有经验和知识基础,找准了教学的现实起点。]
二、合作交流,探究意义
1.操作。
师:1/2可以表示什么?为了便于大家研究,老师为每个小组提供了一些动手操作的材料:(一个圆片、一盒水彩笔、6只熊猫图、8朵花图等)请每人用拿到的材料来表示1/2。
学生操作后,小组交流,教师巡视并参与、指导小组讨论。
[反思:从学生的学习实际出发,为每一个学习小组提供了丰富的、有结构的学习材料,尊重了学生的差异,做到了人尽其才,材尽其用。让学生在小组内交流,保证每个学生都有表达的机会,使个体参与落到了实处。同时,学生在相互倾听、相互补充的过程中,能够不断丰富自己对分数的直观感受。教师参与讨论,可以了解小组讨论的真实情况,便于有效地指导小组合作,调控教学进程。]
2.交流。
师:哪一组愿意来说说,你们是怎样表示1/2的?
生:我把这个圆片对折,其中的一份就是它的1/2。
师:还有哪些同学是运用对折方法表示1/2的?
每组的1号、2号、3号同学都把材料举了起来。
生:3只熊猫是6只熊猫的1/2。
生:4朵花是8朵花的1/2。
师:(指4号同学)你是怎样表示一盒水彩笔的1/2的?
生:一盒水彩笔有12枝,把这盒水彩笔平均分成2份,每份是6枝,6枝是这盒水彩笔的1/2。
师:每盒水彩笔的1/2都是6枝吗?为什么?
生:我用9枝表示这盒水彩笔的1/2,因为这盒水彩笔共有18枝。
师:刚才同学们用不同的材料表示了1/2,现在老师把你们说的用图表示出来(出示图:把一个圆平均分成2份,在每份中都写上1/2)。是不是这样?
[反思:面对各个小组众多的合作学习成果,选取一组作中心发言,节约了教学时间,提高了效率。把不同材料表示的1/2用直观图表示出来,有利于学生把握1/2的本质。]
3.归纳。
师:刚才同学们在表示1/2的过程中,有什么相同的地方?(板书:平均分)有什么不同的地方?(分的材料不同)
师:有的是一个圆片,也就是一个物体,(板书:一个物体)也有的是一个计量单位,如1米长的绳子,(板书:一个计量单位)还有的是由几个物体组成的,如一盒水彩笔、6只熊猫、8朵花,我们称它们为一个整体。(板书:一个整体)你还知道哪些事物可以看作一个整体吗?
生:一个班级。
生:一摞本子。
……
师:一个物体、一个计量单位、一些物体组成的整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。(在“一个物体、一个计量单位、一个整体”上用彩色粉笔覆盖板书:单位“1”)
师:既然一个物体、一个计量单位、一个整体都可以看作单位“1”,那么我们刚才表示1/2的过程就可以概括成把单位“1”平均分成2份,表示这样一份的数就是1/2(板书)。1/2还可以表示什么?
……
师:只要把单位“1”平均分成2份,表示这样一份的数,都可以用1/2来表示。
[反思:对操作过程的回溯、反思、归纳、推演,使学生认识并理解了分数意义中的`两个重要内涵:平均分和单位“1”。]
4.拓展。
红
黄
蓝
(1)出示:
师:红色部分用分数怎样表示?(1/3)黄色部分、蓝色部分呢?
生:都可以用1/3表示。
师:为什么都用1/3表示?
生:因为都是把这个长方形平均分成3份,表示这样的一份的数。
师:黄色部分和蓝色部分共占这个长方形的几分之几?(2/3)
(2)出示:○○○●●●
师:请用分数表示3个红色的圆。
生:1/2。
生:3/6。
师:为什么同样是3个红色的圆,可以用两个不同的分数表示?你是怎样想的?
生:把6个圆平均分成2份,3个红色的圆是1份,占1/2。
生:把6个圆平均分成6份,3个红色的圆是3份,占3/6。
[反思:从1/2扩展到几分之一,从几分之一扩展到几分之几,学生对分数意义的认识变得更加丰富、厚实。用分数表示3个红色的圆,既有利于学生体会平均分的份数和表示的份数之间的关系,又为后继学习分数的基本性质作了铺垫。]
5.概括。
师:我们通过动手操作表示了1/2,并且能根据图意说出相应的分数。知道了把单位“1”平均分成几份,表示这样一份的数就是几分之一,表示这样几份的数就是几分之几。那么,到底什么是分数呢?
生:把单位“1”平均分成几份,表示这样几份的数,叫做分数。
师:他说得完整吗?谁来补充?
生:把单位“1”平均分成几份,表示这样一份或几份的数,叫做分数。
师:打开书第74页,看书上是怎么说的。还有什么问题?
[反思:在学生对分数形成了丰富体验的基础上,教师通过问题及板书的引导,及时让学生概括分数的意义,教材的逻辑意义成功地转化为学生的心理意义。]
6.解释。
师:(指1/100、7/8、9/10)根据分数的意义,你能说说这几个分数所表示的意义吗?(学生回答)
师:你能结合这几个分数说一说,分数的分子和分母各表示什么意思吗?
生:在一个分数中,分母表示平均分的份数,分子表示有这样的多少份。
师:把单位“1”平均分成若干份,表示这样一份的数,叫做“分数单位”。(板书:分数单位)
师:1/100的分数单位是什么?它有几个1/100?7/8、9/10呢?
指名回答后,同桌互相交流自己写的分数的意义及分数单位是什么。
[反思:在学生初步认识分数的意义之后,让学生由抽象回到具体,结合具体的分数解释意义,能深化学生对分数意义的认识。同时,在这一过程中,学生进一步感悟了分子、分母的意义。让学生同桌之间交流自己写的分数和分数单位,扩大了参与面,增加了练习量。]
三、巩固反馈,深化理解
1.书面练习。
完成练习十三第1~3题。
其中阴影部分不能用1/3表示。让学生猜测,可以用几分之几表示,并利用教科书第74页“练一练”第1题的图形,验证猜测是否正确。
[反思:这样处理,一方面用活教材,使分散的习题成为有机的整体,另一方面使学生体会到有时表面上没有平均分的图形也可以进一步细分,进而用分数表示,深化了对分数意义的认识,培养了思维的深刻性。]
2.用分数解决实际问题。
(1)请发过言的同学站起来,发过言的人数占全班人数的几分之几?
(2)找一个未发言的同学站起来,问:你占小组人数的几分之几?占全班人数的几分之几?占全校人数的几分之几?同样是一个人,为什么表示的分数在变化?
(3)现在发过言的人数占全班的几分之几?为什么变化了?
[反思:用分数解决实际问题的过程既是对课堂学习状况的调查,又是对课堂学习内容的升华。由于问题来自于学生的学习实际,既能有效地激发学生参与学习活动的热情,又对部分发言不够积极的学生进行了恰当的教育和引导。]
四、课堂总结(略)
教学内容:
北师大版小学数学第十一册P52的内容及P53的相关练习
教学目标:
1、在实际情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
教学重点:比的化简的方法。
教学难点:运用比的化简,解决一些简单的实际问题。
教学过程:
一、复习铺垫,激趣引新。
(一)复习铺垫。
1、比的意义以及比的各部分的名称。
师:什么叫比?请你举个例子。(生说完举例比如4:5 8:9)
师:师举一个例子问“:”叫?4呢?5呢?
2、比与除法、分数之间的联系与区别。
(1)在除法中,我们学过了商不变性质,谁还记得?
在分数中,分数的基本性质又是怎样?
(2)师:你知道比与除法、分数之间有什么联系与区别?
[设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。]
(二)激趣,揭示课题。
过渡:昨天我们学习了《生活中的比》,今天我们要来学习这个《比的化简》。比应怎样化简?它与分数的基本性质、除法中的商不变性质有什么关系?请同学们来说一说。(某某同学说的是否正确呢,学完今天的知识你们就知道了。)
[设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。]
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
学生带着思考题,看书学习与思考。(思考题
①有什么方法比较哪杯水更甜?
②如何化简比?
③比的化简与分数的约分有什么区别?
[设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。]
活动二:说一说。(反馈看书、自学情况)
①学生汇报比较方法,师根据学生的回答板书。
②教学比的`化简。40:360= 40/360= 1/9 =1:9 2:18=2/18= 1/9 =1:9
③比较:(生说,师重点强调,突出对应思想:
A、比的前项是分子,后项是分母,然后约分。
B、约分是写成最简分数,化简比到最后应化成最简整数比。
C、引导学生小结化简比的方法。
[设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。]
活动三:化简比。14:21 0。5:2。5 2/9:1/3
(1)请三位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这三位同学说说,你是怎么化简的?
(3)请同学们观察这3道题,带着思考讨论题小组讨论(先思考再讨论:
①3道题有什么不同点,它们各用什么方法进行化简的?
②1、2题化简比的过程中,比的前项和后项如何变化的?请小组讨论后回答,师根据学生的回答小结:
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后在化简
分数比:可以前项除以后项,再根据比值写出最简单的整数比。
相同点:把比的前项和后项同时除以或乘以相同的数,比值不变。
(4)回顾:比有什么性质,现在谁知道?(生说师课件出示比的基本性质)
[设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。]
活动四:练一练。
1、化简比。15:21 0。12:0。4 2/3:1/2 1:2/3
2、连一连,完成P53的第1题。
3、大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是(答案),比值是(答案);大、小正方形周长的比是(答案),比值是(答案);大、小正方形面积的比是(答案),比值是(答案)。
[设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。]
活动五:课堂总结。
今天你学会了什么知识?
教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的`速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
14025
=705
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长千米.
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?
教学目的:
1.让学生知道什么是圆的周长。
2.理解圆周率的意义。
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题。
教学重点:
推导圆的周长计算公式。
教学难点:
理解圆周率的意义。
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺。
2.电脑软件及演示教具。
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题)。
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长。
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆。问:你能测量它的周长吗?
回答:不能。
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确。有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题。
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导。
五、统计测量结果。
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”。
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
教学目标:
1、理解本金、利率、利息、利息税等概念。
2、掌握现行利息的计算公式:利息=本金利率时间。
3、了解主要的存款方式,会正确地计算存款利息。
4、认识科学理财的重要性;
教学过程:
一、创设情景,引人新课。
从师生谈话中引出压岁钱的话题。
二、联系生活,理解意义。
1、学生介绍一下有关储蓄的知识。
2、教师出示课前放好的一张100元的存单放大图,请学生观察后回答:你能从这张存单当中知道些什么?(同桌可以商量)。学生汇报结果,教师小结。
3、师要学生按自己的想法填写一张存款凭证。拿出三张比较:
请学生观察这三张存单,说说有什么相同的地方?有什么不同的地方?
(1) 学生分组讨论,教师巡视,参与讨论。
(2) 小组汇报讨论结果。
(3) 小结。
4、引导探索,构建模型。
(1) 请同学们自己选择其中的一张存单,帮那位储户算一算,这张存单到期后可拿到多少利息?(学生用计算器计算存单利息,教师巡回指导。)
(2) 指名解答,师生共评。
(3) 归纳总结利息计算公式。
( 利息的多少跟本金、年利率和存期有关,那么到底有什么样的关系?)
本金利率时间=利息
请学生观察上述三个算式
(4)计算税后利息。
四、巩固训练,解释应用。
师:这就是我们计算利息的基本方法,利用这种方法我们能够解决一些日常生活当中经常碰到的有关利息计算的问题。
巩固练习:
师逐一出示下列题目:
(1)张阿姨购买了三年期的国库券5000元,年利率是3.85%,三年后可得利息多少元? (只列式不计算)
(2)张伯伯做生意,向银行贷款7000元,月利率0.5115%,4个月后应付利息多少元? (只列式不计算)
(3)李叔叔把8000元存银行,存活期储蓄,月利率0.72 %,半年后可得利息多少元?
五、全课总结(让学生谈谈今天的收获)
六、布置作业:
1、练习三十三的第3、4、5、6题。
2、课外练习:
(1)谈谈如何处理压岁钱。
(2)帮王大爷出主意。
教学内容:
课本第9页例4及“做一做”,练习四1—5题。
教学目标:
(1)使学生掌握分数乘加、乘减混合运算。
(2)使学生能够熟练地计算分数乘加、乘减混合运算。
教学重点:
分数乘加、乘减混合运算的运算顺序。
教学难点:
混合运算的步骤。
教学过程:
(一)铺垫孕伏。
1、出示复习题。(投影片)
(1)说出下面各题的运算顺序。
5×6+7×315×(34—27)16×4—7×9
(35+21)×2870—4×636×2+15
2、引出课题:
刚才复习的整数乘加、乘减混合的运算顺序,这节课我们学习分数乘加、乘减混合运算。(板书课题:分数乘加与乘减混合运算)
(二)探究新知。
1、学习例4。
(1)教师点拨:分数加法、减法、乘法混合在一起的`时候,怎样计算呢?运算顺序跟整数运算顺序相同。
出示例4:计算,指名读题。
(2)学生按整数运算的顺序计算。(教师巡视)
(3)订正:
指名学生问:这题先算什么?再算什么?说一说计算过程,教师随学生回答板书:
教师明确:这道题有乘有加,同学们做得很好,如果一道题有乘有减,或者有乘有加还有小括号,这样的题怎么计算?(出示做一做两道题)
2、做一做:
(1)试做:
让学生独立完成在练习本上。(指名两名学生做在小黑板上)
提示:注意计算时只写必要的计算过程。(教师巡视)
(2)订正:
让学生先说先算什么,再算什么。根据学生已有经验,启发学生思考、交流主动学会新知。
(三)全课小结:
这节课我们自己学会了分数乘加、乘减混合运算。大家学习得很好。我们要注意在混合运算中计算步骤还要过于繁琐。还要养成做题认真仔细的好习惯。
(四)巩固练习:
1、练习四第1题。让学生做在练习本上,指几名学生分别写在小黑板上。
2、练习四第3、4、5题。
(五)作业。
练习四第2题。
第四课时:和倍问题的分数应用题
教学内容:课本第65页内容和练习十六的第4-7题。
教学目的:
1.使学生学会“和倍”、“差倍”问题变形的应用题的解题思路和方法,提高学生用方程解答应用题的能力。
教学重点:分析题中出现的两种数量关系
教学难点:会用x表示两种数量并列出方程。
教学过程:
一、准备。
1.口答:(用含有x的式子表示)
果园里有苹果树x棵,梨树的棵数是苹果树的 ,
(1)梨树有多少棵?( x)
(2)苹果树和梨树一共有多少棵?(x+ x)
(3)苹果树比梨树多多少棵?(x- x)
2.饲养小组养的白兔和黑兔共18只,其中白兔的只数是黑兔的5倍,白兔和黑兔各有多少只?
二、新课。
(一)学习例3.
问:“白兔的只数是黑兔的5倍”还可以怎样说?
出示例3:饲养小组养的白兔和黑兔共18只,其中黑兔的只数是白兔的 ,白兔和黑兔各有多少只?
(1)说说它与复习2有什么异同?
(2)根据题意,画出线段图。
(3)“黑兔的只数是白兔的”你怎样理解?
(4)把题目中所存在的数量关系找出来。
(5)应该怎样解答,请你完成。
(6)订正:说说的'解题思路是怎样的。
(7)想一想,怎样检验做得对不对?
(二)变式练习。
将例3的第一个条件变为“白兔比黑兔多16只”。
(1)题目中的数量关系发生了什么变化?
(2)应该如何解答?讨论、交流。
三。巩固练习。
(1)课本第65页“做一做”题目。
四、课堂总结:
1.今天我们学习了什么样的应用题?
2.这样的应用题解思路和方法是怎样的?
五、堂上练习:
练习十六的第7题(1)、(2),比较这两道题有什么不同?它们各用什么解答好?为什么?
六、作业。
练习十六第4、5、6题