小学六年级数学《比例的基本性质》教案(优秀8篇)

作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。优秀的教学设计都具备一些什么特点呢?读书之法,在循序而渐进,熟读而精思,本文是可爱的编辑为家人们收集整理的小学六年级数学《比例的基本性质》教案(优秀8篇),仅供参考,希望对大家有一些参考价值。

比例的基本性质教学设计 篇1

一、教学目标

1、使学生在理解比例的基本性质的基础上认识比例的“项”以及”“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质判断两个比能否组成比例。

教学重点比例基本性质。

教学难点应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

二、教学过程

(一)复习铺垫

1、上节课我们已经认识了比例?谁能说说什么是比例?

2、哪组中的两个比可以组成比例?把组成的比例写出来。

(1)3:5 18:30

(2)0.4:0.2 1.8:0.9

(3)2:89:27

提问:下面每组中两个比能组成比例吗?为什么?

(二)探究新知

1、把左边的三角形按比例缩小后得到右边的三角形。(单位:厘米)

(1)提问:你能根据图中的数据写出比例吗?

(2)两个三角形底的比和高的比相等吗?3:62:4

两个三角形高的比和底的比相等吗?2:43:6

每个三角形底和高的比相等吗?3:26:4

每个三角形高和底的比相等吗?2:34:6

2、(1)学生自学:组成比例的四个数,就是比例的各个部分,那么比例的各部分的名称是什么呢?请同学门自学课本第43页。

(2)学生汇报:组成比例的四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(板书)

3:6=2:4

外项内项内项外项

(2)学生交流:你能说出其他三个比例的内项和外项是多少吗?

(3)写成分数形式的比例,并说一说各比例外项和内项在哪里?

(4)比较:比例和比有什么区别?

3、(1)要求:观察黑板上的四个比例式,你有什么发现?(学生小组讨论、交流)

(2)要求:计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以3∶6=2∶4为例,指名来说明。

内项积是:6×2=12

外项积是:3×4=12

6×2=3×4

4、再写出一些比例,看看是否有同样的规律,学生自己任选两三个比例,计算出它的外项积和内项积。

5、如果用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示为()

6、教师明确:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

板书课题:比例的基本性质

7、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:交叉相乘积相等

8、提问:学习了比例的基本性质有什么用呢?

三、巩固练习。

1、完成试一试

2、比和比例除了在意义和各部分名称方面不同,你认为它们在什么方面还有什么区别?

3、完成练习十/1、2、3、4

4、判断:比例的两个外项的积是1,两个内项一定互为为倒数。( )

5、根据4×9=12×3,写出比例式。

四、全课小结:

这节课你学习了哪些知识?

五、作业:

小学六年级数学《比例的基本性质》优秀教案 篇2

【教学内容】

比例的基本性质(教材第41页内容)。

【教学目标】

1、使学生理解比例的基本性质。

2、提高学生观察、计算、发现、验证和总结的能力。

3、在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。

【重点难点】

应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。

【教学准备】

投影仪。

【复习导入】

1、教师提问:什么叫做比例?

2、应用比例的意义,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?

【新课讲授】

1、教学比例各部分的名称。

引导学生自学教材第41页第1行、第2行的内容。

教师板书:2.4∶1.6=60∶40

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书:

学生认一认,说一说比例中的外项和内项。

2、探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

教师板书:比例的基本性质。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。

验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。

如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

3、应用比例的基本性质,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

组织学生在小组中互相交流,然后指名汇报。

4、教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?

学生讨论交流后,指名回答。

教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。

【课堂作业】

教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

1、教材第43页练习八第5题。

2、完成练习册中本课时的练习。

答案:(1)不可以组成比例;(2)可以组成比例;(3)可以组成比例;(4)不可以组成比例

第2课时比例的基本性质

在比例里,两个外项之积等于两个内项之积。这叫做比例的基本性质。

小学六年级数学《比例的基本性质》教案 篇3

教学目标:

1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的数学思想。

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:掌握化简比的方法。

教材分析:比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。

学情分析:学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。

教学过程

活动一

1、出示例1,让学生解答。

2、教学比例的基本性质

(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的。关系验证。

②根据比值验证。

......

③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?

活动二

1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

2、根据你自己的理解,能说一说什么是最简单的整数比吗?

(前项和后项是互质数。)

3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。

让学生试做后,总结方法。

4、出示例1(2)①1/6:2/9

②0.75:2

学生先讨论方法,再试做。

5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

6、化简比与求比值有什么不同?

7、质疑

活动三

1、做一做46页化简比。

2、48页第4题

小学六年级数学《比例的基本性质》优秀教案 篇4

教学目标:

1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:CAI课件

教学过程:

一、复习、导入

1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、 课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

二、认识比例的意义

(一)认识意义

1、 指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

(二)练习

1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示:3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4

=

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、全课总结(略)

小学六年级数学《比例的基本性质》优秀教案 篇5

【学习内容】

《义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1、通过练习1检测目标1的达成;

2、通过练习1检测目标2的达成;

3、通过练习1、2、4检测目标3的达成。

4、通过练习3检测目标4的达成。

【学习重点】探索并掌握比例的基本性质。

【学习难点】能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

比例的基本性质教学设计 篇6

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

2.4:1.6和60:40

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=

()×()=()×()

(2)0.8:1.2=4:6

()×()=()×()

(3)4×5=2×10

4:()=():()

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例?

三、作业

完成课文练习六第4~6题。

课后记:

小学六年级数学《比例的基本性质》优秀教案 篇7

教学内容:

补充有关比例意义、基本性质和解比例的练习

教学目标:

1、进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。

2、进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。

3、通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。

教学措施:

帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。

教学准备:

上传补充练习

教学过程:

一、整理知识

1、提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。

2、学生同桌之间进行交流。

3、指名学生交流,教师相机板书,将知识点进行梳理和归纳。

4、揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)

二、基本练习

1、判断。

(1)比例是一个等式。

(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。

(3)比例的两个内项减去两个外项的积,差是0。

(4)任意两个正方形的周长与边长的比都可以组成比例。

(5)如果A╳9=B╳6(A、B均不为0),那么,A与B的比是3:2。

组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。

2.根据下面的等式,写出几个不同的比例。

3╳40=8╳15

(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?

(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。

3、判断四个数10.5、5/4、20/21、8能否组成比例?

(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)

(2)你认为这里选择哪种方法比较方便?

(3)指名学生交流后,学生写出比例。

小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。

4.按要求组成比例。

(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。

(2)从18的所有约数中选出四个组成一个比例。

(3)把8和9作两个外项,比值是1/2的一个比例。

(4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的比例。

逐个出示题目,学生练习之前先要弄清题目要求。

学生完成后进行交流,要求说说自己的思考过程,教师及时评价。

教师要及时关注学生存在的问题及时辅导。

5.根据比例的基本性质,在括号里填上合适的数。

15:3=( ):1 2:0.5=12:( )

0.3/4=( )/32 7/9:( )=1/2:3/5

( )/12=3/18 ( ):4.5=0.4:9

先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。

三、解比例

25:7=X:35 514: 35= 57:x 23:X= 12:14 X:15=13: 56

2、根据下面的条件列出比例,并且解比例

a. 96和X的比等于16和5的比。

b. 45 和X的比等于25和8的比。

c. 两个外项是24和18,两个内项是X和36 。

四、全课总结

通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?

四、布置作业

补充相应练习

《比例的基本性质》教学设计 篇8

教学内容:比例的基本性质

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

2.4:1.6和60:40

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40

内项

外项

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外

项项项项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)〔〕与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:

两个外项的积是×=0.6

两个内项的积是0.5×1.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=

2.4×40=1.6×60

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=

()×()=()×()

(2)0.8:1.2=4:6

()×()=()×()

(3)4×5=2×10

4:()=():()

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例?

三、作业

完成课文练习六第4~6题。

课后记:

一键复制全文保存为WORD
相关文章