小数乘小数教学设计优秀3篇

作为一位无私奉献的人民教师,就有可能用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么优秀的教学设计是什么样的呢?下面是小编辛苦为大家带来的小数乘小数教学设计优秀3篇,希望能够帮助到大家。

《小数乘小数》的教学设计 篇1

一、教学目标:

1、使学生通过自主探究,理解并掌握小数乘小数的方法,能正确计算相应的式题。

2、使学生在探索计算方法的过程中,培养初步的推理能力以及抽象、概括能力。

3、使学生进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。

二、教学重难点:

掌握小数乘小数的方法,会熟练的进行笔算,并能解决实际问题。掌握小数末尾的0的处理方法。

三、教具准备:

课件、图片

四、教学课时:

一课时

五、教学过程的设计

㈠情境导入

1、师:同学们,进入了二十一世纪,每位同学家里的生活条件都好了,住进了楼房。(课件出示)焦老师想采访一下,你家的住房面积有多大?

生:122平方米;116平方米……

师:你的小房间面积又有多大呢?

生:16平方米;48平方米(引导孩子想一想一平方米大约有多大,48平方米不太符合实际。)

2、师:我们看,这是小芳同学房间的平面图。(课件出示)

你能求出她房间的面积吗?

生:能。

师:怎样列式?

生:3.6×3板书:3.6×3

师:为什么用3.6×3?

生:因为小芳房间的平面图是一个长方形的图形,我们要求小芳房间的面积实际就是求这个长方形的面积。

师:说的真好。那怎样计算3.6×3呢?

生:把3.6看成36与3相乘,得到108。因为因数中有几位小数,积有几位小数,3.6的因数是一位小数,积也应该是一位小数。所以要在108中点上小数点。

生:先按整数乘法来算,再看因数里有几位小数,就从积的右边起数出几位,点上小数点。

3、师:说的真好。所以小芳房间的面积是10.8平方米。

板书:3.6×3=10.8(平方米)

接着看,这是小明同学房间的平面图。(课件出示)

师:从图中,你能搜集到哪些信息?

生:我知道了小明房间是长是3.6米,宽是2.8米;阳台的宽是1.15米。

师:根据这些信息,你能提出哪些用乘法计算的数学问题?

生:小明房间的面积是多少?

生:小明家阳台的面积是多少?

生:小明家房间和阳台的面积一共是多少?

师:要求小明家房间和阳台的面积一共是多少?先要解决什么问题?

生:小明房间的面积是多少?和小明家阳台的面积是多少?

师:求房间的面积有多大怎么样列式?(课件)

师:阳台的面积有多大怎么样列式?

生:板书:3.6×2.8= 2.8×1.15=

4、师:观察一下;例1和复习题有什么区别?

生:复习题是小数乘整数,例题是小数乘小数。

师:今天我们就一起来研究小数乘小数。

㈡引导探究

1、师:你能估计一下房间的面积大约是多少?

你是怎样估计的?房间的面积在什么范围内?

生:我估计房间的面积在12平方米左右。我把3.6看成4,把2.8看成3,用4×3=12(平方米)

师:那是12平方米吗?

生:不是,比12平方米要小。

师:有和他不一样的吗?

生:我把3.6看成3,2.8看成3,用3×3=9(平方米)。所以我估计面积是9平方米左右。

生:我根据3.6×3=10.8(平方米),我估计面积不到10.8平方米。

(如果学生答不出来,师:提示:和3.6×3比较一下,你觉得是多一点还是少一点?为什么?

生:少一点,因为3.6×3=10.8,而我们要求的是3.6×2.8还不到3,所以积肯定比10.8要小。)

师:那么到底谁估计的比较准确呢?下面我们就来精确的算一算。

2、师:怎样计算3.6×2.8呢?会算吗?把你的想法说在小组里交流,在把讨论的过程写下来。(四人小组讨论)

生1:把3.6米换算成36分米,把2.8米换算成28分米,用36×28=1008(平方分米)再把1008平方分米换算成10.08平方米。板书:36×28

生2:我们已经学过小数乘整数,只要把其中一个因数扩大10倍,与另一个因数去乘,在把积除以10倍就可以了。3.6不变,把2.8扩×10倍变成28,用3.6×28=100.8,在把积缩小10倍就是10.08。板书:3.6×2836×2.8

生3:用竖式计算:3.6×2.8。

师:用竖式计算,你是怎样算的?

生:先摆竖式,把3.6×10倍看作36,把2.8×10看作28,在计算36×28=1008,在把积除以100倍,点上小数点。

学生说的时候板书计算过程。

师:谁能再说一说,他是怎么做的?

生:把3.6×10=36,把2.8×10=28,用36×28。

师:那就和谁的想法一致啦?

师:接着说。

生:计算出36×28=1008,在除以100倍,得到10.08。

师:为什么要缩小100倍?

生:因为3.6×10,2.8×10倍,一共乘了100。要想得到原来3.6×2.8的积就要除以100倍。

师:说的很好,我们一起来看把3.6×10,再看另一个因数2.8也乘10

两次一共扩乘了多少?

生:100。

师:1008是怎么来的?

生:把3.6×10变成36,2.8×10变成28,用36×28得到1008。

师:这是不是3.6×2.8的结果?

生:不是。

师:我们要得到3.6×2.8的积要怎么办?

生:把1008÷100倍。

师:说的真好,谁在来说说你是怎样算的?(多请几个学生说)

生:把把3.6×10倍变成36,2.8×10倍变成28,用36×28得到1008。

我们要得到3.6×2.8的积要把1008÷100倍,就是10.08。

师:通过计算,我们得出3.6×2.8的积是多少?

生:通过计算,我们得出3.6×2.8的积是10.08平方米。

师:大家说的真棒!我们来看,这里的虚线框实际上是我们想的过程,一般我们不把它写出来,只写虚线框外面的部分。都算出小明房间的面积了吗?我们来看看那位同学估计的最准确?

生:估计10.8的同学。

㈢自主发现

1、师:刚才我们还想知道小明家阳台的面积,用竖式计算应该如何摆呢?

生:1.15×2.8或2.8×1.15

师:为什么要怎样摆?你觉那种摆法更好点?

生:因为我们是把1.15和2.8都看成整数来计算的,所以三位数写在上面,两位数写在下面更简便。

师:对了我们要学会选择合理的算法。会做吗?老师相信你们肯定能算出来。打开书完成填空。写完的同学给我一个暗示。

师:你是怎样做的?

生:先看一个因数乘100倍,另一个因数乘10倍,积就乘100倍,就从积的右边起数出三位,点上小数点。

师:结果是3.220,为什么等号后面写3.22?怎样化简?为什么可以这样化简?

生:根据小数的性质,我们可以把小数末尾的"0"化简。

小结:老师明白了,他是先看一个因数乘100倍,另一个因数乘10倍,积就乘100倍,就从积的右边起数出三位,点上小数点。是3.220。再把小数末尾的0舍去。这样比较简便,我说的对吗?我们来看,这里的虚线框实际上是我们想的过程,一般我们不把它写出来。你们知道该怎样写吗?

学生说教师板书,

2、师:我们刚才都是把小数看成整数来计算,然后再把整数还原成小数。如果每题都这样去想是不是很麻烦?你能找到更简便的方法吗?下面我们一起来讨论。(出示讨论题)指名读题。

⑴例题中的两个因数分别是几位小数?积是几位小数?

⑵"试一试"中的两个因数分别是几位小数?积是几位小数?

⑶通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?

师:小组讨论,依次回答。你的发现是什么?

生:我发现两个因数的小数位数的和就是积的小数位数。

生:两个因数一共有几位小数,积就有几位小数。

师:通过这三道讨论题,我们能不能总结一下,小数乘小数应该怎样计算?

生:小数乘小数,先按照整数乘法来算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

3、师:说的很好,下面我来考考你们。

不计算你能准确判断出下面每题的积是几位小数吗?

5.2×9.9=51.484.8×0.86=4.128

0.62×0.73=0.45268.65×4.8=41.52

最后一题出现要化简的情况。重点强调一下。

8.65×4.8的积应该是三位小数,可它的末尾有"0",根据小数的性质进行化简,化简后就是两位小数了。

㈣巩固练习。

1、师:我已经按整数计算出它的积,要想得到原来的积,你能为它点上小数点吗?

生:第一题因数中一共有2位小数,积就因该有两位小数。

第二题因数中一共有3位小数,积就因该有三位小数。

第三题因数中二共有2位小数,积就因该有两位小数。但是要把小数末尾的"0"化简。积就是一位小数量

2、师:同学们说的很好,下面我们来计算两道题。

87页练一练的第二题。

3.46×1.2=4.1521.8×4.5=8.1

第一题要注意因数中有三位小数,积就应该有三位小数。

第二题注意要先点上小数点在化简。第二题你是怎样算的?

全课小结:通过今天这节课的学习,你有什么收获?

反思

一、链接生活情境,激活相关经验

紧扣例题,教师从与学生生活息息相关的住房问题入手,使学生顺利进入本课的学习。通过对两个算式的比较,直截了当地进入本课的主题:小数乘小数。这样的导入,生动活泼,很好地体现了数学来源于生活,同时又服务于生活的教学新理念 不难看出,新课导入时,教师就链接了生活情境,激活了学生相关的学习经验。通过1.2×4与1.2×4.5两个算式,既自然复习了旧知识(小数乘整数),又激活了新知识的生长点,给计算教学增添了浓郁的现实意义。

二、开放学习空间,自主探索实践

小学生的思维是在有效的数学活动中发生、发展的。新授环节先后组织了两次有效的探究活动。

第一次:出示小明家的房间平面图,要求学生观察,提出问题并列出乘法算式。学生很快发现,可依次求出房间、小床、阳台的面积。

教师随机板书了3.6×2.8、1.95×1.1、1.15×2.8三个算式,先让学生进行估算。接着,启发思考:“你认为这些算式最值得认真研究的问题是什么?”在学生交流的基础上,出示活动要求:利用工具(计算器)探究,可以两人合作,研究内容是积的小数位数的规律。

两次开放的探究活动,让学生运用原有的知识经验自主地进行估算、口算、笔算,在培养学生的估算能力、计算能力的同时,点亮了教材细节,帮助学生灵活掌握了小数乘小数的算理算法。

《小数乘小数》的教学设计 篇2

教学内容:

P70页例7及“试一试和练一练”,练习十二2、3题。

教学目标:

使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。

教学重点:

正确运用计算法则计算小数乘小数的乘法

教学难点:

理解小数乘小数的意义,掌握小数乘小数的计算法则

教学过程

一、复习

0.52+0.48=0.17+0.33=3.6+6.4=

0.8×3=3.7×5=46×0.3=

二、新授:

1、教学例7。

(1)出示例7

(2)从图中你知道了哪些信息?

(3)提问:如果要求小明房间的面积有多大?先估计一下。

3.8×3.2≈()(说一说估计的方法)

(4)提出:列竖式计算怎样算呢?

把这两个小数都看成整数,很快计结果。

3.8×1038

×3.2×10×32

7676

114÷100114

12.161216

相乘后怎样才能得到原来的积?

(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。

2、第65页试一试。

提出:要求阳台的面积是多少平方米?怎样列式?

计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)

强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68

3、小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)同桌讨论:说说小数乘小数应该怎样计算?

小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固练习

1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)

2、完成第65页练一练第2题(学生独立完成,集体校对)

3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)

4、完成练习十二第3题。(说说数量关系,再列式计算)

四、课堂小结:今天你学到了什么知识?

教学反思

面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:

1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。

第七课时小数乘小数(二)

教学内容:P66页例8,“练一练”,练习十二第1、3、4、5题。

教学目标:使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。

教学重点:掌握确定积的小数位数时,位数不够时用“0”补足

教学难点:确定积里小数点的位置

教学准备:课件、展台

教学过程:

一、复习:出示练习十二第4题

根据第一栏的积,写出其他各栏的积(说说是怎样想的?)

二、教学例8。

出示例8。

(1)花架的占地面积是多少平方米?怎样列式?

指名回答,师板书算式。

(2)学生试做。

0.28

《小数乘小数》的教学设计 篇3

教学目标

1、结合具体的事物,经历自主探索小数乘小数的计算方法的过程。

2、理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

3、积极参与数学活动,获得借助计算器和运用自己的知识解决问题的成功体验。

教学过程

一、问题情境

师生谈话,由介绍自己家的房间面积谈起,引出聪聪家客厅面积的问题。教师口述出示相关信息并板书。

师:同学们,我们的身边有许多数学问题,我想了解一下,哪位同学知道自己小房间长和宽大约是多少,面积有多大?

学生发言,教师对注意观察生活的学生给予表扬。

师:我们先来算一算聪聪家客厅面积的问题。聪聪家客厅长4.8米,宽3.6米。

教师板书:

长4.8米 宽3.6米

二、解决问题

1、客厅面积。

(1)提出问题

(1),师生共同列出乘法算式。引导学生观察算式中的因数的特点。

师:要求“聪聪家客厅的面积有多少平方米”怎样列式?

学生说算式,教师板书:

4.8×3.6=

师:观察算式中的因数,你发现了什么?

生:算式中两个因数都是小数。

生:两个因数都是一位小数。

师:观察的很仔细,今天我们就来研究小数乘小数的计算方法。

板书课题:小数乘小数

(2)提出估算的要求,让学生说一说自己是怎样想的。学生方法只要合理,就予以肯定。

师:请同学们先估算一下,聪聪家客厅的面积大约是多少。

给学生一点思考、估算的时间。

师:谁来说一说,你是怎样估算的?结果是多少?

学生可能出现以下方法:

(1)把4.8看成5,把3.6看成4,5×4=20,所以客厅面积不到20平方米。

(2)把4.8看成5,把3.6看成3.5,5×3.5=17.5,所以,聪聪家客厅的面积大约是17.5平方米。

(3)把4.8看成4,把3.6看成3,4×3=12,聪聪家客厅的面积一定在12平方米以上。

(3)提出用竖式计算的要求,讨论:两个因数都是一位小数怎么办?用整数相乘的方法算出48×36的积以后怎么办?让学生充分发表自己的想法。

师:聪聪家客厅的面积不到20平方米。那么,到底是多少平方米呢?我们运用竖式计算一下。

教师板书竖式:

师:同学们,大家已经会用竖式计算小数乘整数了,这个算式中两个因数都是一位小数,怎么办?

生:4.8扩大10倍是48,3.6扩大10倍是36,先算48×36。

生:把两个因数分别扩大10倍,变成48×36。

师:把两个因数分别扩大10倍,变成48和36。

教师板书:

师:用整数相乘的方法算出48乘36的积以后怎么办?

学生可能出现不同意见。如:

生:把积缩小100倍。

生:把积缩小10倍。

如果出现不同意见,教师进行指导。使学生了解,两个因数分别扩大10倍,就等于这两个因数的积扩大100倍。

即: 4.8×10×3.6×10

=4.8×3.6×100

(4)先讨论怎样计算,再师生共同完成竖式计算。重点讨论怎样确定小数点的位置。

师:谁来说一说,4.8×3.6怎样用竖式计算?

生:把4.8看作48,把3.6看作36,用整数乘整数的方法算出48乘36的积,再把积缩小100倍。

师:好!请同学们说,我来写,我们共同完成竖式计算。

教师随着学生的回答,板书:

师:按整数相乘得出1728后,怎么办?

生:把1728缩小100倍。

生:从1728右边开始数出两位点上小数点。

教师完成板书:

2、沙发占地面积。

(1)让学生读问题

(2),并观察沙发图,了解其中的信息和要解决的问题,写出算式,并讨论算式中两个因数的特点。

师:通过计算,我们知道了客厅的占地面积是17.28平方米,聪聪家客厅中摆放着一个沙发,请看18页的沙发图,并认真读一读文字,说说你了解到哪些信息,要解决的问题是什么?

生:沙发的长是1.8米,宽是0.85米。

生:问题是沙发占地多少平方米?

师:求沙发占地多少平方米?怎样列式?

学生可能说出不同的算式,教师肯定并板书。

0.85×1.8

师:同学们看一看这个算式的两个因数,你发现了什么?

生:这个算式中的两个因数都是小数。

生:两个因数一个是一位小数,一个是两位小数。

(2)提出:“怎样用竖式计算”的问题,进行讨论,然后师生共同完成,竖式计算。在横式中写得数时,告诉学生,根据分数的基本性质,小数末尾的0可以不写。

师:这样的两个小数相乘,用竖式计算怎样算呢?

教师板书竖式:

生1:1、8扩大10倍是18,0.85扩大1000倍是85,先算出18乘85的积,再把这个积缩小1000倍。

生2:先按整数相乘的方法计算85×18,再把积缩小1000倍。

学生说的只要合理就给予肯定。

师:好!就按大家说的方法,我们一起算一算。大家说,我来写。

学生说,教师板书。

师:按整数相乘的方法算出85×18等于1530后,怎么办?

生1:把1530缩小1000倍,在1的后面点上小数点。

生2:从1530的右边开始数出三位,在前面点上小数点。

教师在竖式中点上小数点。

师:大家看今天算出的这个小数积比较特殊,小数的末位是0,根据小数的基本性质,在横式写得数时,小数末尾的0可以不写。

完成横式:

0.85×1.8=1.53(平方米)

(3)让学生用计算器检验,得到确定答案。

师:用竖式算的对不对呢?请同学们用计算器检验一下。

学生计算交流。

三、归纳总结

让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。再师生共同总结归纳小数乘小数的计算方法。

师:观察两个竖式中的因数和积,你发现它们的小数位数有什么关系?

生:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。

生:积的小数位数就是两个因数小数位数的和。

师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,不计算,我们就能判断积的小数位数。谁能说一说小数乘小数的计算方法?

生1:按照整数乘法的计算方法算出积。

生2:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

最后,教师完整的口述小数乘小数的笔算方法。

师:小数乘小数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

四、尝试应用

1、提出问题(3),让学生自己读题并观察茶几图,了解信息和要解决的问题,列出算式,先估计积有几位小数,再用竖式计算。

师:请同学们看19页第(3)题中的图及文字,说说你知道了哪些信息,问题是什么?

生:茶几的长是0、9米,宽是0、45米,要求茶几的面大约是多少平方米。

师:怎么列式?

学生说,教师板书:

0、45×0、9=

师:估计一下,0、45×0、9的积有几位小数?为什么?

生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。

师:请同学们试着用竖式计算。

学生自主笔算,教师巡视,个别指导。请一名好学生板演。

2、订正学生计算的结果,重点说一说怎样确定积中小数点的位置。

师:谁和板演的结果不一样?

如果学生出现小数点点错的,就结合错题进行指导。如果没有,请板演的同学说一说确定小数点时是怎样想的。如:

生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。

3、“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。

师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?

生:看两个因数一共有几位小数。

五、课堂练习

1、“练一练”的第1题。让学生先判断积有几位小数,再计算,最后全班交流。

师:请看“练一练”第1题,判断一下,积有几位小数。

指名回答。

师:请同学们在练习本上计算。

学生自主计算,教师巡视,注意帮助学习有困难的学生。

2、“练一练”的第2题,先引导学生弄懂题意,再独立完成。

师:请同学们读一读第2题,说说你从中了解到了哪些信息?

学生说出“大门和侧门的宽度和高度”的信息。

师:学校大门和侧门的面积各是多少?请同学们算一算。

一键复制全文保存为WORD
相关热搜