三角形的面积教学设计优秀10篇

作为一无名无私奉献的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计需要注意哪些问题呢?三人行,必有我师也。择其善者而从之,其不善者而改之。该页是漂亮的编辑帮大家分享的三角形的面积教学设计优秀10篇。

角形面积的教学设计 篇1

教学目标:

1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用。

教学重点:

掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点:

培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

课前准备:

直角三角形、锐角三角形、钝角三角形各一对,课件。

教学过程:

一、复习:

1、出示一个平行四边形。(课件)

“这是什么图形?”“平行四边形面积计算公式是什么?”

“用字母怎样表示?”“我们在推导平行四边形面积公式时,运用了什么方法?”

“通过割补法,把平行四边形转化成了什么图形?”

2、揭示课题:“同学们周日预习的主要内容是什么?”(板书:三角形的面积)

二、探究新知:

1、导入:

“通过预习,同学们对于三角形的面积有了一定的了解,那么,我们现在就要考查同学们预习的效果,如果有疑问,你看一看通过我们共同的努力是否把它解决了。”

“三角形的面积计算在我们没有预习前是一个陌生的知识,同学们想一想,三角形的面积计算是否可以像平行四边形那样,把它转化成我们学过的图形呢?”

2、小组学习:拼组三角形

让学生拿起桌面上的两个直角三角形。

“这两个三角形是什么三角形?”

“它们有什么特点?”(引导学生说出“完全一样”)

以此引导学生观察另外两组三角形。

“同学们想一想,用两个完全一样的三角形能否拼出我们学过的图形呢?而且拼出图形的面积还会计算。”

以小组为单位活动。

完成后汇报、交流。

3、通过观察、分析和计算,总结三角形面积计算公式。

“老师把用两个完全一样的三角形拼成的平行四边形放大了贴在黑板上,同学们注意观察,听老师的提问。”

“每个平行四边形的面积可以求出来吗?”“为什么?”

学生答出以后,写出每个平行四边形的底和高。

“这样能求了吗?”(板书算式)

“如果让你求其中一个三角形的面积,怎样列式?”(板书算式)

“通过我们上面求平行四边形和三角形的面积,同学们看一看,三角形和拼成的平行四边形有什么关系?”

引导学生说出。第二个和第三个同样讲解。

“同学们看一看,通过我们的实际操作和列式计算,我们是不是可以得出一些结论呢?”(课件出示,填空)

“你们可以总结出三角形的面积计算公式吗?”

“底×高”求的是什么?为什么要除以2?

“计算三角形的面积必须知道几个条件?是哪几个?

4、应用计算公式解决问题。

出示例题,让学生独立计算,解答后汇报、交流。

三、巩固练习:课件出示(略)

《三角形的面积》教学设计 篇2

教材分析:

三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。

学情分析:

在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的`面积这课时,学生已经具备了一定的知识准备和能力基础。

教学目标:

1、经历三角形面积公式的推导过程,理解公式的意义。

2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。

3、会用三角形的面积公式计算三角形的面积。

4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。

教学重点:三角形面积公式的推导。

教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。

教学过程:

一、导入阶段

通过故事情景产生生活中三角形比较大小的问题:

1、比三角形的大小用数学语言来表达是比什么?

2、采用哪些方法可以比较呢?

小结 :运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?

二、探究阶段

(一)画三角形。

1、每个学生拿出准备好的长方形纸,按要求画三角形。

操作说明:

(1)以长方形纸的一边作为三角形的底边。

(2)以对边的任意一点作为三角形的顶点。

(3)连接顶点与对面的两个角。

(4)你画了一个什么样的三角形?

2、大组交流。

3、猜一猜:要求学生根据自己所画的三角形猜一猜它的面积是整个长方形面积的几分之几?

4、观察已画三角形与长方形之间的特殊关系

5、画出三角形已知底上的一条高,观察已画的三角形的面积占整个长方形面积的几分之几?

(二)实验

1、剪拼三角形。

操作说明:

(1)剪下你所画的三角形。

(2)将剩下部分拼到剪成的三角形中。

思考:剩下部分拼成的三角形是否与剪成的三角形一样大?

(3)填写实验报告

2、学生完成报告后交流

(三)归纳

根据学生的实验得出结论:

一个直角三角形的面积是相应的长方形面积的一半。

一个锐角三角形的面积是相应的长方形面积的一半。

一个钝角三角形的面积是相应的长方形面积的一半。

(1)请学生用一句话来概括。

(2)用数学的方式来表示:三角形面积=相应长方形面积/2

(3)根据长方形的面积公式,推导三角形的面积公式

(4)用字母表示三角形的面积公式。

三、运用阶段:

1、教学例

2、计算导入阶段的3个三角形的面积

(1)分别测出3个三角形的底与高,作好记录。

(2)计算出每个三角形的面积。

(3)交流。

(4)拓展:找出下列图形中面积相等的两个三角形,为什么?

四、总结

这节课我们学习了什么?2、计算三角形面积要知道那些条件?

《三角形的面积》教学设计 篇3

一、教学目标

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

四、教学设计

(一)由谈话导入新课

师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

[板书课题:三角形面积]

(二)探究活动。

师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

师:下面我们将按小组来探究三角形面积的计算公式。

(教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

(学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。

生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

生3:我们是将一个三角形用割补法进行推导的。

……

师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

生:三角形的面积=底×高÷2s=a×h÷2(在学生叙述时,教师板书)

师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

师:下面我们运用三角形的面积计算公式解决一些具体的问题。

(巩固练习略)

五、教学反思

本节课是围绕着“通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

《三角形的面积》教学设计 篇4

教学目标:

1、知识与技能:

(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

三角形面积公式的推导过程。

教学关键:

让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

教具准备:

红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:

每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

教学过程:

一、创设情境,揭示课题

师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)

教师提出问题:

⑴红领巾是什么形状的?(三角形)。

⑵你会算三角形的面积吗?

师:这节课我们一起来学习探索三角形面积的计算方法。

板书:三角形的面积

[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

二、探索新知

1、寻找思路:(出示一个长方形)

师:(1)长方形面积怎样计算?

(2)怎样可以把这个长方形平均分成两份?

有三种方法:

方法一:方法二: 方法三:

师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)

每个三角形面积与原长方形的面积有什么关系?

[设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

生:长方形的面积=长×宽

生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

板书:三角形的面积=底×高÷2(直角三角形)

师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

接着出示思考题:

(1)将三角形转化成学过的什么图形?

(2)每个三角形与转化后的图形有什么关系?

[设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

2、分组操作、讨论,合作学习。

(1)提出操作和思考要求。

学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。

小黑板出示讨论问题:

①用两个完全一样的三角形拼一拼,能拼出什么图形?

②拼出的图形的面积你会计算吗?

③拼出的图形与原来三角形有什么联系?

(2)学生以“四人小组”为单位进行操作和讨论。

[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]

平移

旋转180°

合拼

教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)

[设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]

(3)学生上讲台板演。

①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)

可能出现以下情况:(用两个完全一样的三角形摆拼)

(两锐角三角形)(两钝角三角形)(两直角三角形)

平行四边形平行四边形长方形

②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。

师:通过动手操作,你们发现了什么?

引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)

师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

生:每个三角形的面积是拼成的平行四边形的面积的一半。

生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)

[设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]

3、讨论与归纳公式

(1)讨论:(小黑板出示问题)

①、三角形的底和高与平行四边形的底和高有什么关系?

②、怎样求三角形的面积?

③、你能归纳出三角形的面积计算公式吗?

[设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

(2)归纳公式。

学生讨论、汇报:

因为:三角形面积=拼成的平行四边形面积÷2

所以:三角形面积=底×高÷2

教师板书:三角形面积=底×高÷2

师:为什么要除以2?

生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半

师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

结合学生回答,教师板书:s=ah÷2

[设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?”“为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]

4、看书质疑。

师:你能说说,课本中是怎样得出三角形的面积计算公式的?

(充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)

师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?

如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)

三、应用新知,解决问题

师:现在同学们能帮老师解决问题了吗?

1、计算一条红领巾的面积。

师:你能估算出这条红领巾的底和高各是多少吗?

生:……

师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?

学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)12.5cm。

2、独立完成p85做一做。

学生板演,教师点评。

[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

四、深化理解、应用拓展

1、课本86页的练习第1题。(课件出示)

师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?

(先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)

3、判断题

(1)三角形面积是平行四边形面积的一半。( )

(2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )

(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )

(4)等底等高的两个三角形,面积一定相等。( )

(5)两个三角形一定可以拼成一个平行四边形。( )

4dm

2.5dm

3dm

4、求右图三角形面积。

(要计算上图的三角形面积,强调三角形的底和高一定是对应的。)

5、课本86页第3题:已知一个三角形的面积和底

(如右图),求高。

师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

(生讨论汇报,再计算、反馈。)

6、做课本86页第4题(然后汇报、评讲。)

要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

[设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

五、总结

师:今天这节课,我们主要学习了什么知识?你有什么收获?

(小出示)让学生说一说图意:

生:……

师:很[]好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

[设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

六、课外作业

课本第87页“练习十六”第5、6、7题。

板书设计

三角形的面积

平行四边形的面积=底×高

s=ah÷2

=100×33÷2

=1650(cm)

三角形面积=底×高÷2

s=ah÷2

教学反思:

本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来“教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

一、小组结合动手操作

在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

二、引导学生发现问题、思考问题,培养合作精神

在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

三、应用公式解决生活中的问题

新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

《三角形的面积》教学设计 篇5

教学目标:

1.知识与技能:

(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解并掌握三角形面积的计算公式

教学难点:理解三角形面积计算公式的推导过程

教学准备:教具:多媒体课件、红领巾实物。学具:剪刀、各种不同类型的三角形等。

教学过程:

创设情境,引入课题

一、创设情境,引入探索

1、出示红领巾,问:会计算它的面积吗?

2、学生交流 (课件演示)揭题

二、自主合作,探究新知

1、请看大屏幕说一说你看到了什么?课件出示不同的三角形 {学生口述)

2、三角形面积公式的推导

活动一:

请同学们拿出准备的三角形, 用推导平行四边形面积的方法,试着拼一拼,摆一摆,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:

你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

(1)学生分小组进行操作实践活动

(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。

拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。

拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。

拼法三:两个完全一样的钝角三角形拼成一个平行四边形。

拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。

拼法五:两个完全一样的等腰直角三角形可拼成一个正方形。

教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:

三角形的面积=底×高÷2

[设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。

活动二:除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。

(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?

(2)交流汇报(请学生展示剪拼过程)

(三角形的面积)(三角形的底)(三角形高的一半)

三角形的面积=底×高÷2

活动三:老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。教师介绍。

教师讲解,并用三角形的纸给学生演示。

长方形的面积=长×宽

(三角形的面积)(三角形的底÷2)(三角形高的÷2)

[设计意图]让学生体会到解决问题方法的多样性。这对有余力的学生是一种提高,进一步培养了学生的创新意识,开阔了学生的思维,使学生也体会到了学习数学的乐趣。

3、教师小结:我们用拼图法、剪拼法、折叠法的方法把三角形转化成学过的图形,推导出了三角形的面积公式。那么,如果用字母a表示三角形的底,h表示三角形的高,S表示三角形的面积,你能用字母表示三角形的面积公式吗?

三、巩固应用

公式运用

1、出示例题: 红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?

( 学生尝试完成) 交流做法和结果 S=ah÷2

=100×33÷2

=3300÷2

=1650㎝2

2、你会计算这个三角形标志牌的面积

3、对比练习,分别计算,同底等高的三角形面积相等 。

4、这些道路交通警示标志你认识吗?算一算2块标志牌的面积大约是多少平方分米?

做这样的两块标志牌 要用多少平方分米的铁皮?

5、火眼金睛

四、巩固拓展

图中有哪两个三角形的面积相等?你能找出几组?

五、小结。

今天我们学习了三角形面积的计算方法,你都有哪些收获?

《三角形的面积》教案 篇6

教学目标:

1、探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点: 三角形面积公式的探索过程。

教学方法:学生合作探索

教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

一、创设情境、导入。

师:昨天下年,老师接到一个任务,想请咱们班的同学帮我一起解决,你们愿意吗?

今年“六一”儿童节,我们学校少先队要吸收100名同学入队,需要做100条红领巾(电脑出示:红领巾),需要买多少布料?(电脑出示问题:需要买多少布料)

师:要解决这个问题,必须知道什么?

生:必须知道一条红领巾的大小。

师:也就是要知道一条红领巾的面积。你们看看红领巾是什么形状的?

生:三角形。

师:三角形面积的计算方法,我们还没有接触过,这节课我们就一起来研究三角形的面积。(板书:三角形的面积)

[设计意图:利用学生熟悉的红领巾引入,调动学生探究的热情。]

二、新授。

1、复习:

师:回忆一下,平形四边形面积的计算方法是怎么推导的?

生1:将平行四边形沿着它的一条高裁下一部分,平移到另一边,变成一个长方形。

师:公式是怎么推导出来的?

生2:平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。因为长方形面积=长×宽,所以,平行四边形面积=底×高。

师:大家对平形四边形的面积公式的推导掌握得不错(电脑出示:(1)转化成已学过的求面积计算的图形。(2)找到它们之间的联系,推导出面积计算的公式)

师:我们先把平行四边形转化成已学会的计算面积的图形长方形,然后找到平行四边形与长方形之间的联系,推导出了平行四边形的面积公式,我们能不能依照平行四边形面积公式推导的方法,试着找到三角形面积计算的方法呢?

生:能。

[设计意图:利用新旧知识间的联系,使旧知识成为新知识的铺垫。]

2.操作实践:

(1)提出操作和探究要求。

让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。

屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?

②拼出的图形与原来三角形有什么联系?

(2)学生以小组为单位进行操作和讨论。

学生实验,教师参与到小组中进行指导。

[设计意图:放手给学生自主探索,让学生的智慧充分得到施展。]

(3)展示学生的剪拼过程,交流汇报。

(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报

组1:我们用两个直角三角形拼成一个长方形。

师:我这有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(教师操作)

生:我们用的是两个完全一样的三角形。

师:你怎么知道是两个完全一样的三角形?

生:把两 个三角形重合,就可以知道是两个完全一样的三角 形。

师:你们用两个完全一样的三角形,拼成了长方形,怎么拼得这么快?

生:我们找到了两条相等的边,而且两个三角形的方向相反。

师:看来呀,要想很快地用两个完全一样的直角三角形拼成长方形,首先要找到对应相等的边,然后把两个三角形反方向对齐。(教师操作)还有没有其他结果?

组2:我们还用两个完全一样的锐角三角形拼成平行四边。

师:你们是怎么拼的?

生:把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。

师:三角形有几条边?

生:三条边。

师:所以,用两个完全一样的三角形中任意两条对应相等的边都可以拼成一个平行四边形。还有没别的结果?

组3:我们用两个完全一样的等腰直角三角形,拼成了一个正方形。

师:非常好。

3.第二次操作实践。

师:大家来看,你们已经把三角形转化成了平行四边形,长方形,那么,怎么推导出三角形的面积方法呢?下面我们进行第二次小组合作,根据你们本组转化的图形,找到它们之间的联系,推导出三角形面积的计算公式,开始。

(学生实验,教师参与到小组中进行指导。)

师:同学们计论得非常认真,找到三角形的面积计算方法了吗?

生:找到了。

师:哪个小组说说你们是怎么找到的?

生:我们用两个完全一样的三角形拼成了平行四边形,平行四边形的面积是底乘以高, 再除以2就可以求出一个三角形的面积。(板书:底*高 2)

师:是不是求一个三角形的面积,我们一定要拼成平行四边形以后现算?

生:不用,我们发现三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,所以三角形的面积是底乘以高再除以2。(板书:三角形的面积=底*高 2)

师:你们的发现太棒了,同学们,看看你们拼成的平行四边形之间是不是也存在着底和底相等,高和高相等这种关系?

生:是。

师:拼成的平行四边形与三角形不但面积有关系,它们底和高也不关系,三角形的底等与拼成的平行四边形的底,这种相等的关系叫做等底,三角形的高等于拼成的平行四边的高,这种相等的关系叫做等高,那么三角形的底乘以高求出的是什么?

生:平行四边形的面积。

师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

生1:拼成的平行四边形是三角形面积的二倍。

生2:每个三角形的面积是拼成的平行四边形的面积的一半。(评价、肯定)

[设计意图:通过大量感知,弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法。]

师:因为三角形面积=拼成的平行四边形面积÷2,所以,三角形面积=底×高÷2[板书:三角形面积=底×高÷2]是这样吗?

生:是的。

师:如果用s表示三 角 形 面 积,用α和h分别表示三 角 形的底和高,那么你能用字母写出三角形的面积公式吗?

生:s=ah÷2[板书:s=ah÷2]

4.看书质疑。

指名讲述课本中是怎样得出三角形面积公式的。

师:我们刚才是从两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你们还能用别的方法去推导三角形的面积公式吗?

生1演示:(沿两腰中点裁开,将上部绕一端旋转180度)师生共同得出,三角形的面积=底×(高÷2)=底×高÷2

生2演示:(沿等腰三角形的高裁开,拼成长方形)师生共同得出,三角形的面积=(底÷2)×高=底×高÷2

师:同学们真了不起,想到那么多的方法推导出三角形的面积公式。得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?(反扣公式,加深理解)

三、应用新知,解决问题

师:有了公式,下面我们可以帮学校解决问题了。

学生独立完成(一生板演),集体订正。

师:你认为计算三角形的面积,什么地方容易出错?

生1:÷2

生2:×100

师:是呀,同学们做题一定要仔细,相好每一步求的是什么,才能避免出错。

[设计意图:这是公式的运用环节,同时回应引入的问题]

四、深化理解、应用拓展

1、课本31页的练习第5题。课件出示下图:

师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

(教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

2、想一想,下面说法对不对?为什么 ?

(1)三角形面积是平行四边形面积的一半。( )

(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

(4)等底等高的两个三角形,面积一定相等。 ( )

(5)两个三角形一定可以拼成一个平行四边形。( )

3.做课本33页第11题(然后汇报、评讲。)

[设计意图:设计分层练习,巩固、理解并提高了对三角形面积公式的认识。]

五、回顾总结,深化提高:

师:这节课探究了什么?

生:三角形的面积。

师:是怎样探究的呢?

生:转化成平行四边形。

师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。

[设计意图:引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法]

教学后记:

对于本节课的教学就教学效果上来看,我比较满意。

一是创设了学生熟悉的“做红领巾,帮学校计算要用多少布”这一情境,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。

二是有效地利用了平行四边形面积公式的推导经验,使学生很容易就找到新旧知识间的联系,使旧知识成为新知识的铺垫,把三角形也转化成平行四边形来求它的面积呢。

三是在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点。

四是通过分三个层次设计练习,第一层基本练习,使学生巩固、理解并提高了对三角形面积公式的认识。

但我深知,需要改进的地方还有很多,如版块有点小,其次,“用两个完全一样的三角形摆拼,能拼出什么图形?”的设计是为了体现两个完全一样的三角形能拼成了平行四边形,但从另一个角度上来看,禁锢了学生的思维,使的学生思考的空间变小了。再是我的课堂语言仍不够简洁,这些都需要努力改进。

《三角形的面积》教学设计 篇7

一、所在班级情况,学生特点分析

本校是一所比较偏僻的山村小学,本班有39名学生,男生15名,女生24名,全都是农民的子女。学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着信息技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,尤其是我们偏远山区的孩子,使得已有知识基础、探索新知的程度等也会出现差异。

二、 教学内容分析

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、 教学目标

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

四、 教学难点分析

1、三角形面积公式的建立;利用分割与旋转进行图形转化

2、三家形面积公式的概括;利用分割与旋转进行图形转化

五、 教学课时

一课时。

六、 教学过程

(一)由谈话导入新课

我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

板书课题:三角形的面积

(二)探究活动。

根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

下面我们将按小组来探究三角形面积的计算公式。

(学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

(通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

(在学生叙述时,教师板书)

刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢的语言再来说一说三角形面积公式的意义。

不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

下面我们运用三角形的面积计算公式解决一些具体的问题。

七、课堂练习

⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。

2、完成教材P26“试一试”。

学生独立完成,板演,教师订正

(以教材为引领,完成自主探究的学习过程,经历数学建模。)

八、作业安排

完成教材P26“练一练”第1—4题。

《三角形的面积》教学设计 篇8

教学目标:

知识与技能目标:

a、运用已有的知识和转化的数学思想,推导三角形的面积计算公式;

b、理解并掌握三角形的面积计算公式;

c、能正确计算三角形的面积

过程与方法目标:通过动手操作,让学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

情感态度和价值观目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣,在解决实际问题中体验数学与生活的联系。

教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。

教学难点:理解三角形面积公式的推导过程。

教学方法:演示法、讲解法。

教学过程

1、创设情境,引入课题

出示两组三角形卡片。请观察两组大小不同的三角形(形状不同,面积相似),让学生比较哪个面积大?怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

2、探究新知

(1)复习四边形面积公式的推导方法

(2)。玩游戏,小组内交流问题。

要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:

A、两个完全一样的三角形能拼出什么图形?

B、拼成图形的面积你会算吗?

C、拼成的图形与原来每一个三角形有什么联系?

(学生在小组里动手拼一拼,并相互交流以上问题)

(3)、学生代表上台演示汇报

(4)、根据学生的汇报,老师小结,演示拼凑过程

看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,大家都说其中一个三角形的面积是平行四边形面积的一半。

(5)、补充课外小知识(古代数学家对三角形面积的推导)

3、学以致用,解决实际问题。

(1)计算红领巾的面积

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?(询问学生在计算面积时需要知道什么条件?并计算)

(2)判断正误。

让学生进一步体会两个完全一样的含义,掌握三角形面积的推导与计算

4、课堂小结

本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

5、布置作业

课本P86--87页第2、4、5题

6、板书设计

《三角形的面积》教学设计 篇9

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:

你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

2.提问:

图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:

大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1、让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2、验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷26×(4÷2)

=12(平方厘米)=12(平方厘米)

6×4÷26÷2×4

=12(平方厘米)=12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1、从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2、如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书:s=ah÷2)

(三)应用。

例一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1、口算出每个三角形的面积。

①底8米,高7米

②底5分米,高12分米

③a:4厘米,h:2.5厘米

④a:20分米,h:5.4分米

2、课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是xx厘米,底都是xx厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3、先量一量,标出图形的长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是()。

a.9×4÷2b.15×4÷2

c.15×9÷2d.15×4

②求右图面积的算式是()。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5d.4.1×3.5÷2

③求下图面积的算式是()。

a.25×20b.18×25

c.18×20d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

角形的面积教学设计 篇10

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

[设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。]

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。]

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

[设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。]

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

[设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。]

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的长度后,再计算各三角形的面积。

[设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。]

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

[设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。]

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

[设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。]

五、布置作业。

一键复制全文保存为WORD
相关文章