作为一名人民教师,常常需要准备教案,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?
教学目标:使学生会列方程解答“和倍问题”与“差倍问题”的应用题,提高学生分析问题和解决问题的能力。
使学生掌握检验方法,养成自觉检查、验算的良好习惯。
重点难点:会列方程解答“和倍问题”与“差倍问题”的应用题
有两个未知数,如何设未知数
教学过程:
一、复习准备
1、化简下列各式
6X+3X0.8X-0.7X4X+X-2
16X-15X3X-X+8X0.9X+0.1X
2、出示:果园里有梨树40棵,桃树的棵数是梨树棵数的3倍。要求学生:
(1)分组讨论把已知信息表示在线段图上
(2)根据已知信息,通过计算,你能获得哪些信息?
(3)计算出你想知道的信息,然后表述自己的思考过程
二、学习新课
1、出示例7:果园里有桃树和梨树共160棵,桃树的棵数是梨树的3倍。两种树各有多少棵?
(1)让学生根据已知条件画出线段图
(2)和准备题的`线段图比较,有何异同?
(3)和前面所学的列方程解应用题相比,有什么特别的地方?
(4)要求的两个问题怎样设未知数?
(5)题中蕴含的相等关系是什么?
2、尝试练习,指名板演。
3、检验
(1)讨论检验方法:40+120=160
120÷40=3
(2)还可以怎样检验?
4、完成试一试
三、巩固练习:练一练1—5
四、总结并布置作业
教材分析:
“质数和合数”是九年义务教育小学数学五年级(上)第一单元的内容,在教材第10~11页;是学生学习了因数和倍数的意义,了解了2、5、3倍数的特征之后的重要知识,它是学生学习分解质因数、求公约数和最小公倍数的基础,在本章教学中起着承前启后的重要作用。
教学目标:
1、使学生根据因数和倍数的意义,会判断一个数是质数还是合数;
2、培养学生观察、比较、概括和判断能力;
3、向学生渗透“对立统一”的辨证唯物主义观点。
教学重点:
理解质数和合数的意义。
教学难点:
正确判断一个数是质数还是合数。
教学准备:
课件
教学教法:
新课程的数学教学强调:要培养学生用数学眼光、数学知识、方法去分析事物,思考问题。本课我主要采用“探究性学习指导法”,把“有意义的思考方法和习惯思维”放在教学首位,构建探索型的教学模式,充分体现“以学生发展为本”的教育理念。
教学过程:
一、谈话引探,导入新课。
如:(1)、用哥德-猜想引出课题。
(2)、结合自然数1—20的因数具体说说。(这样直奔主题的教学,为学生探究知识和巩固知识留下了足够的时间和空间。)
二、自主学习,探究新知。
首先让学生利用课件很快找出1~20各数的因数,铺垫探底。然后讨论怎样给这些数进行分类,怎样分比较合理?(把学生的思维导向于有意义的思考。)学生根据所学的知识有按偶数、奇数分的,有按2、3、5的倍数分的、也有按10以内、10以外的数分的等等,对于学生的分法,教师给于了鼓励,引导学生看书上怎么分的,观察因数的个数,以“因数个数”的多少来分,学生很快以“只有一个约数的、只有两个约数的、有两个以上因数”分为三类。教师及时出示课件,然后让学生列举出相应的数。这时教师明确告诉学生;像2、3、5、7、11这样只有两个因数的数就叫质数。让学生通过观察每个质数的因数特点概括出质数的意义,并且要求学生按照质数的意义自己找出一些质数,找准确了说说找质数的方法(突出教学的重点)。同样道理,合数的意义就迎刃而解了。紧接着让学生看一个因数的数是谁?书上是怎么给它下定义的?然后出示一些数,让学生判断哪些数是质数?哪些数是合数?判断正确了让同学们互相交流判断方法,为什么又对又快?(从而突破教学难点。)
三、应用知识、巩固知识。
1、让学生根据学习资料,把1~20这20个数按照奇数、偶数、质数、合数进行分类,分类完成之后互相交流这些数之间的联系和区别。如2既是质数又是偶数;9、15既是奇数又是合数。(既巩固了新知识,又加强了知识之间的横向和纵向联系。)
2、出示闯关题,有填空、选择、判断、游戏,内容丰富、形式多样,闯关成功给予奖励。(目的是激发学生的学习兴趣,提高学习效率。)
3、小组合作学习制作100以内质数表,课件出示学习要求
(1)独立思考制作方法
(2)小组交流方法
(3)动手制作
(4)汇报展示。
4、课件出示100以内质数表,学生熟记。(便于今后的应用。)
5、全课总结、课外延伸。
师生共同回忆这节课所学知识之后听一则数学信息。歌德-猜想之一:任何一个大于4的偶数,都可以写成两个奇数(或素数)之和。并让学生了解到这个猜想目前证明得的是我国数学家陈景润,可惜离成功只差一步便离开了人世。听完后谈感想。(让学生的学习动机、学习兴趣、情感价值观得到进一步的提升。)
教学内容:
P81—85,例1、例2和练习十四
教学目标:
⒈使学生知道常用的土地面积单位公顷、平方千米;通过观察、计算、推理和想象等活动,体会1公顷的实际大小,发现平方米、公顷和平方千米之间的进率,会进行简单的单位间的换算。
⒉使学生能借助计算器,结合平面图形面积公式和有关面积单位换算的知识,估计或计算相关的土地面积。
⒊使学生积极参与学习活动,体会数学与生活的联系,培养与他人合作的意识和能力。
教学重点、难点:
⒈知道常用的土地面积单位公顷、平方千米;
⒉进行简单的单位间的换算及计算相关的土地面积
教学课时:2课时
(1)公顷的认识
教学内容:
p.81、82的例1,试一试,练一练,练习十四第1~4题
教学目标:
1、知道常用的土地面积单位公顷,通过实际观察和推算,体会1公顷的实际大小;知道1公顷=10000平方米,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
3、通过积极参与观察、推算、分析的过程,培养学生主动参与数学活动的意识,提高与同伴合作交流的能力,在学习中获得快乐的情感体验。
教学重点、难点:
建立1公顷有多大的空间观念,公顷与平方米之间简单的单位换算。
教学过程:
一、复习面积单位:
1、板书“面积”,问:面积指的是什么?
(物体表面的大小或图形的大小。)
面积与周长有什么不同?(面积是指的“面”的大小,周长指的是边的长短。)
分别举例:书封面的面积和黑板面的面积。
2、指出:面积有大有小,所以需要不同的面积单位。已学过的面积单位(从大到小):平方米、平方分米、平方厘米
问:1平方米是多大?(要求学生分别从两方面考虑:边长是1米的正方形面积就是1平方米;教室地面上的大方块约是1平方米)
继续同法复习1平方分米、1平方厘米
复习进率:100
3、估一估:教室地面面积大约是多少平方米?
一坨一坨地量,估得长约8米,宽约6米
算一算:8×6≈50平方米
(提醒:结果要合乎实际,还要方便计算。)
二、认识公顷:
1、通过预习,大家已经知道今天要学新的面积单位:公顷
说说你知道1公顷有多大?
(边长是100米的正方形面积;10000平方米)
根据第一句话算一算:100×100=10000平方米
提醒:以前学习的三个面积单位进率是100,现在新学的公顷和平方米的进率是10000;公顷可以用字母“ha”表示
2、猜一猜:我们的操场面积有1公顷么?为什么?
(操场的长100米多一点,宽大约只有50米,100×50=5000平方米,大约是半公顷。)
板书调查的操场面积:4575平方米
4575平方米=( )公顷
你是怎么想的?(小数点向左移动4位)
继续猜:整个学校的占地满1公顷么?你是怎么想的?
(只要学生说出的想法合理就行。)
满2公顷么?为什么?
板书调查好的数据:13970平方米
问:13970平方米=( )公顷
你是怎么想的?
3、说说你对公顷的认识。(是一个很大的面积单位)
我们学校的面积只有1公顷多一点,如果用平方米做单位,很精确,但数较大,不方便。所以在描述一些地方的时候可以用公顷为单位,这样更清楚。
4、读例1的4张图。
也可请知道有关情况的同学坐一些简单的介绍。
5、读书:边长100米的正方形土地,面积是1公顷
你有什么发现?(以前的面积没专指“土地”,为什么这里要强调“土地”呢?)说明公顷是个大单位,除了土地之外,没有什么东西的面积可以用它作单位。
三、巩固练习:
1、试一试,读题后学生列式计算。指导学生用简便方法计算。
2、练一练,(1)算出足球场的面积,指导乘11的简便算法;指导规范的答题格式。
(2)用刚才算的“50平方米”,算一算,大约多少个这样的教室地面的面积是1公顷。注意“0”的个数。
3、练习十四。(1)读题后了解这两个信息,并换算。指出:在整数范围里,平方米换算成公顷就是去掉末尾的4个0,公顷换算成平方米的时候只要在末尾加上4个0;注意进率是10000。
(2)学生独立填写,指名交流。
(3)作业:第3、4题
强调几个面积公式:长方形、正方形、平行四边形、梯形、三角形
4、讲评预习作业。
(2)平方千米的认识
教学内容:
p.82、83的例2,试一试,练一练,练习十四第5~7题
教学目标:
1、知道常用的土地面积单位平方千米;通过猜想和推算,知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
3、在学习活动中进一步体会数学与生活的联系,培养相互合作的能力,在学习中获得快乐的情感体验
教学重点难点:
认识1平方千米;发现平方千米与平方米、公顷之间的进率,会进行简单的单位换算
教学过程:
一、复习:
说说已经学过的几个面积单位,注意从大到小地说。老师板书成:
公顷(红笔写)、平方米、平方分米、平方厘米
问:公顷很特别,说说它有哪些特别之处?
(其它的面积单位都有“平方”两字,它没有;公顷是其中最大的面积单位,用于土地面积;其它的面积单位进率都是100,而它和平方米之间的进率是10000……)
说说1公顷指的是多大的面积?(要学生熟练地说出:边长100米的正方形土地面积。)
二、学习新知:
1、这节课我们要学习一个更大的面积单位,是什么?
板书:平方千米
知道1平方千米是多大么?
(边长是1千米的正方形土地面积)
回忆“1千米”的长度:选两个熟悉的相距1千米的地方,体会相距1千米是较远的距离。
算一算:1000×1000=1000000平方米=100公顷
联系实际想一想它的实际大小:
约200个操场的面积大小……
体会:平方千米是一个最大的面积单位,它一般用于一个城市、省、国家等很大的面积。
2、学习例2:
读书上的例2,了解“平方千米”所用的地方。
3、补充:
中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。
我们太仓的面积:800.906平方千米,其中陆地面积538.466平方千米,我们城厢镇面积:185.01平方千米
指出:我们太仓是一个县级市,面积大约有近千平方千米。
4、完整的面积单位进率:
平方千米、公顷、平方米、平方分米、平方厘米
只有公顷和平方米之间的进率是10000,其他的相邻面积单位间的进率都是100
三、巩固练习:
1、试一试:学生独立列式解答,注意书写格式、进率换算。
2、练一练:
(1)算一算,注意末尾0的个数。再换算。
(2)单位换算,指名说说换算的方法,比较圆明园的面积大小。
(3)学生独立完成,并交流换算方法。
3、练习十四的部分练习:
(1)以江苏省地图为参照,估一估其他各省的面积。如可以先从山西省地图中描画出和江苏省差不多大的部分,再估计剩余部分的面积。估计完后,老师报出确切的数据,检验学生的估算能力。
山西省15.63万平方千米,湖南省21.18万平方千米,云南省39.4万平方千米,海南省3.4万平方千米
(2)边说边比画出1平方厘米、1平方分米、1平方米,1公顷、1平方千米
说进率:100平方厘米=1平方分米,100平方分米=1平方米
10000平方米=1公顷,100公顷=1平方千米
(3)在括号里填上合适的面积单位:
计算机屏幕:问“为什么不是780平方分米?”
计算机房:一般房间的面积用“平方米”
香港面积:太仓的面积有800多平方千米,香港比太仓大,应该也是“平方千米”;一个城市、甚至更大的地方面积都要用“平方千米”。
机场跑道:20公顷
4、你知道吗?
学生读一读,了解基本情况。
估一估哪个洲面积最大?然后老师从大到小依次报出各面积,学生记录。
四、布置作业
1、教学目标
1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;
2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
2、学情分析
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
3、重点难点
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4、教学过程
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛
五、拓展总结。
师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听X先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
一、教学目标
1、知识目标:使学生在具体情境中理解与掌握方程的意义,认识方程和等式之间的关系,使学生初步理解等式的基本性质。
2、能力目标:使学生在观察、思考、分析、抽象、概括的过程中,经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展学生思维的灵活性。
3、情感态度与价值观:使学生在积极参与数学活动的过程中,加强数学知识与现实世界的联系,培养学生认真观察、善于思考的学习习惯与数学应用意识,渗透转化的数学思想。
二、学情分析
学生对于利用天平解决实际问题较感兴趣,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
三、重点难点
教学重点: 让学生理解并掌握等式与方程的意义,体会方程与等式之间的关系。
教学难点: 体会方程与等式之间的关系。
四、教学过程
活动1【导入】谈话导入 出示,讨论天平的作用及用途,平衡状态和倾斜状态各说明什么情况。平衡状态说明托盘两边质量相等,倾斜状态说明托盘两边质量不相等。
活动2【讲授】探究授新
一、 认识等式与方程。
1、出示(一),天平的两边放上砝码左边20克和30克,右边50克。提问:你看到天平怎样?天平平衡,说明什么?(生:说明两边质量相等。) 你能用式子表示两边物体之间的质量关系吗?(20+30=50)为什么中间用等号? 指出:像这样表示相等关系的式子就是等式。
2、出示(二),把左边的其中一个20克砝码换成x克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x+30=50)
3、出示(三),把左边托盘中的一个x克的砝码拿走,右边的50克砝码换成30克,观察天平,出于什么状态,说明什么问题?你能用式子表示它们之间的关系吗?(x>30, 30<x)
4、出示(四)天平图 你能用式子表示两边物体之间的质量关系吗? (X+X =100或 2X=100 )
5、出示(五)天平图 你能用式子表示两边物体之间的质量关系吗? (10+ X<80或80>10+ X )
6、出示刚才5道不同的式子。让学生分组讨论对5道式子进行分类。(提示:要按一定的标准进行分类。)指名分类,要求说出分类标准。
7、对“是等式的”与“含有字母的”式子进行再次分类。 “是等式的”分为“不含有字母的等式”、“含有字母的等式”。 “含有字母的”分为“含有字母的等式”、“ 含有字母的不等式” 观察“是等式的”中“含有字母的等式”与“含有字母的” 中“含有字母的等式”发现了什么?这些式子有什么共同的特征?
8、师小结:像这样含有未知数的等式是方程。 你能举出一些方程吗?(先指名说,后同桌互说。)
9、揭示课题:认识方程。
二、认识等式与方程关系
1、认真观察刚才的(1)20+30=50 (2) x+30=50(5) 2X=100,问:(1)是等式吗?是方程吗啊?(2)(5)是方程吗?是等式吗?
2、小结:是方程一定是等式,是等式不一定是方程。
3、你能不能用图形表示方程和等式之间的关系吗?
引入集合圈表示它们之间的关系。
三、巩固新知
1、哪些是等式?哪些是方程?为什么?
① 35- =12 ( ) ⑥ 0.49÷ =7 ( )
② +24 ( ) ⑦35+65=100 ( )
③ 5 +32=47 ( ) ⑧-14> 72 ( )
④ 28<16+14 ( ) ⑨ 9b-3=60 ( )
⑤ 6(a+2)=42 ( ) ⑩+=70 ( )
2、请同学们自己写出方程与等式各3个。
3、张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?
4、判断。(正确的打“√”,错误的打“×”。)
(1)含有未知数的等式是方程( )
(2)含有未知数的式子是方程( )
(3)方程是等式,等式也是方程( )
(4)3=0是方程( )
(5)4+20含有未知数,所以它是方程( )
5、列出方程
(1)x加上42等于56。
(2)9.6除以x等于8。
(3)x的5倍减去21,差是14。
(4)x的6倍加上10,和是20.8。
6、看图列出方程。
列方程时,一般不把未知数单独写在等号的一边
7、先读一读,再列出方程
(1)一辆汽车的载重是5吨,用这辆汽车运x次,可以运40吨货物?
(2)一瓶矿泉水的价格是2.5元,一个面包的价格是x元,买2个面包和1瓶矿泉水一共花了11.9元。
四、 课外小知识,介绍方程的历史,让孩子们体会学习方程的用途。小结,通过今天的学习你有什么收获?你还想学习方程的那些知识?
板书设计:
认识方程
20+30 = 50
x +30 = 50 含有未知数的等式,叫做方程。
x > 30 方程一定是等式;
2 X = 100 等式不一定是方程。
10 + X < 80
教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:正确掌握圆面积的计算公式。
教学难点:圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:这个圆形的中心就是喷头所在的地方。
师:请大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,�
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1、回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2、推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天这节课你学到了什么?
2、圆面积的计算方法,我们是怎样探索出来的?
3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。
六、布置作业
1、第107页的第1-3题。
2、找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
七、板书设计:
圆的面积
S=r2×3倍多
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。
在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
学情分析
1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;
2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。
教学目标
1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。
2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。
3、活化抽象的。概念,增进学生应用数学的意识,激发学生学习数学的热情。
教学重点和难点
1、质数、合数的意义。
2、质数、合数与奇数、偶数的区别。
教学目标
1、进一步理解分数基本性质的意义,掌握约分的方法。
2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。
教学重难点约成最简分数
教学准备:分数卡片口算卡片
教学过程
一、自主回顾
回顾一下对约分的理解情况
突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。
师:什么是最简分数?
说一说。
二、巩固练习
师分数卡片判断
1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)
你是怎样寻到的?说说自己的理由好么?
2、能用不同的分数表示下面各题的商吗?
练习十一第8题
师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。
师:你能写出不同的除法算式吗?
=()÷()=()÷()
你能说出几个除法的算式?
这些算式之间有什么联系?
3、快乐学习超市
超市画面快乐套餐1快乐套餐2
快乐套餐1:比一比○○0.4
计算并化简+=-=
在()填上最简分数20分=()时
快乐套餐2、3同上。
(分组练习小组代表汇报整合了练习十一10至14题)
4、集中练习
把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?
分母是10的最简分数有几个?
请你提出一个类似的问题。
课堂作业
练习十一第9题,12、13、14题各自选2个
课后练习:完成练习册上的相应练习。
【学习目标】
1、边听录音边浏览课文,了解相声的艺术特点和语言特色。
2、通读课文,体会故事中的人说话啰嗦的特点,明白简洁明快地说话的重要性。
3、了解相声是以说、学、逗、唱为主要表现形式的语言表演艺术,能对相声感兴趣。
【学习重点】
在笑声中得到启迪;说话不仅要把话说明白,还要说得简练得体。
【学习难点】
了解相声语言表达上的特点。
【课时安排】
1课时。
【课前准备】
一个挂钟、事先录制相声《打电话》片断。
【教学过程】
一、谈话导入,揭示课题
1、同学们,我们平常说话呀,要讲究艺术。杨氏之子与孔君平的对话,风趣幽默,深深地感染了我们。晏子的能言善辩让我们领略了机智应对的语言魅力。今天我们来学习《打电话》一文,从这篇课文中,我们又能感受到什么呢?
2、揭题:打电话。
3、谈打电话:
⑴ 导语:
同学们一定都打过电话,电话使人们的交流变得方便快捷,打电话的时候最需要注意的问题是什么呢?(尽量地节约时间)
⑵ 如果你要给你的好朋友打电话,约他晚上六点半在某电影院门口见面,一块看电影,你会怎么说呢?
⑶ 模拟计时表演。
(两个学生上台模拟表演,教师计时。)
板书特写:
____分钟
小结板书:简练、得体、明白。
⑷ 这么一点儿事,如果有人打了两个多小时,你们信不信?让我们一起欣赏相声《打电话》。
二、初读课文,整体感知
1、读课文,扫除字词障碍、了解相声主要内容:
⑴ 学生自学,自由读课文。
⑵ 检查自学,正音:呃、耗子、啰嗦、嘚儿啷。
⑶ 交流:
这个相声说的'是一件什么事?你最大的感受是什么?
2、分角色朗读课文,读通顺:
⑴ 找一个小伙伴分角色练习对话,并互相评价。
⑵ 擂台赛:
各小组推荐两人,竞赛读。(教师、他生当评委)
三、再现课文,深入领悟
1、讨论:
甲、乙说话各有什么特点?从哪些方面可以看出来?
⑴ 甲:不知道你猜猜。猜不着?猜不着使劲猜。呃,猜不着我告诉你。我姓啰,我叫啰嗦。
乙:是够啰嗦的。
甲:对,是我,我找小王讲话,我的未婚妻,她是女的呀。
乙:废话,可不是女的嘛。
⑵ 甲:我正找你呢。今天晚上有什么事吗?学习吗?不学习呀。开会吗?不开会。
乙:废话。
甲:讨论吗?不讨论。
乙:人家没事。
甲:太好了。我请你听戏好不好?票都买好了。长安大戏院,楼下十排三号五号,咱俩挨着。票价八毛一张的,我买了两张,一块六,我给了他五块,他找了我三块四。
乙:他在这报账呢!
2、归纳:
作者在这里极尽夸张之能事,把一个啰嗦者说话啰嗦表现得淋漓尽致。
3、小组练习:
小组内练习表演《打电话》。
4、集体推荐两人上台表演相声《打电话》,教师计时。
板书特写:
____小时
小结板书:啰嗦、耗时、误事。
5、畅所欲言:
通过观看相声《打电话》,你受到了什么样的启迪?
6、小结:
说话太啰嗦不但浪费自己和他人的时间,还会耽误事情,我们平时说话不仅要把话说明白、得体,还要说得简练才行。
四、学生选读,了解相声
1、学生选择自己最喜欢的片断浏览,体会相声特点。
2、学生谈自己对相声语言特点的感受。
3、教师小结:
通俗易懂发,如话家常;幽默、风趣、夸张。
4、欣赏表演,进一步感受相声艺术的魅力。
播放事先录制的该相声表演录像,一边欣赏一边感受相声艺术的魅力。
5、小结:
相声不仅是说,还是唱,相声以反映现实生活为主要内容;相声常常在最后要“抖包袱”;相声是笑的艺术,又是一种雅俗共赏的语言表演艺术,可以让人们在笑声中得到启迪……
五、自选作业
(选择自己喜欢的一项完成。)
1、创设情境,尝试创作:
⑴ 语言情境一:
甲没有太高的文化水平,而又喜欢夸夸其谈显示自已有知识,仅就“海马”一词,就出入意料地闹出了一连串的笑话。
⑵ 语言情境二:
悦悦是一个冒失鬼,又是一个机灵鬼,他常常用机智巧妙的语言帮自己摆脱困境。
⑶ 语言情境三:
有两个小朋友常常在一块比吹牛,谁也不服谁,这不,他们又吹上啦。
⑷ 语言情境四:
小明是一个很具幽默感的孩子,同学们常被他逗得开怀大笑。
选择自己喜欢的话题,和同桌一起创作几句。
2、熟读《打电话》,想象当时的情景,用叙述的方式写下来,并表达自己对此种现象的看法。
教学目标
1.掌握用含有字母的式子表示一些常见的数量关系.
2.知道利用最基本的数量关系求出其中任意一个未知量.
3.能根据关系式计算.
教学重点
使学生会用字母表示常见的数量关系.
教学难点
会利用数量关系式求出其中一个未知量.
教学过程
一、复习准备
(一)用字母表示
1.加法交换律_______,乘法交换律_______.
2. 简写为_______, 简写为_______或_______.
(二)复习常见的数量关系
二、新授教学
(一)
1.教师介绍:我们已经学过一些常见的数量关系,这些数量关系同样可以用含有字母的式子来表示.
2.举例说明
例如:路程=速度时间
用字母 表示路程, 表示速度, 表示时间
公式: =
3.变式练习
(1)已知某一物体运动的路程和时间,怎样求它的运动速度?
(2)已知某一物体运动的路程和速度,怎样求它的时间?
(二)教学例2
例2.一列火车每小时行60千米,从甲站到乙站行了4.5小时.甲乙两站之间的铁路长多少千米?
1.教师说明:利用数量关系式,只要知道某一物体运动的速度和时间,把它们代入上面的公式,就可以求出所行的路程.
2.学生分组讨论
(1)已知条件和所求问题是什么?
(2)本题的数量系是什么?
(3)怎样用字母表示?
3.尝试解答
=_______________
=_________
答:甲乙两站之间的铁路长_______千米.
(三)巩固练习
1.收入、支出和结余的关系可以写成下面的公式:结余=收入-支出用a表示收入,b表示支出,c表示结余,写出这个公式.
2.一个学校食堂上个月收入伙食费3475元.各项支出一共是3058.73元.这个食堂上个月结余多少元?(把数值代入上面用字母表示的公式计算)
(四)归纳总结
1.理解题意,找到数量关系.
2.式.
3.代入数值计算.
4.写出答案.
三、课堂小结
本节课你学习了什么知识?
四、巩固反馈
(一)填空
1.已知物体运动的速度和路程,那么时间=_______,用 和 表示速度和路程, 表示时间, =_______
2.已知商品的'单价用 表示,总价用 表示,数量用 表示,那么 =_______, _______, _______.
五、课后作业
(一)1.如果用a表示工作效率,t表示工作时间,c表示工作总量,写出求工作总量的公式.
2.一个工人每小时可以加工零件25个,利用上面的公式,算出这个工人8小时可以加工多少个零件?
(二)1.如果用b表示小麦单位面积产量,x表示面积数,s表示总产量,写出求总产量的公式.
2.根据上面的公式,分别写出求单位面积产量和面积的公式.
六、板书设计
例2.一列火车每小时行60千米,从甲站到乙站行了4.5小时.甲乙两站之间的铁路长多少千米?
路程=速度时间
=
=604.5
=270
答:甲、乙两站之间的铁路长270千米.
【教学目标】
1.知识与技能:会用计算器计算比较复杂的小数乘、除法,并有利用计算器进行计算的意识。
2.过程与方法:在利用计算器进行计算时,学生能通过观察、分析发现算式中的规律,并能按规律直接填得数。
3.情感、态度与价值观:在引导发现规律、描述规律的过程中,培养学生的逻辑推理能力,让学生体会数学中的美以及探究的乐趣。
【教学重点】
能用计算器探索计算规律,并能应用探索出的规律进行一些小数乘、除法的计算。
【教学难点】
发现规律。
【教学准备】
多媒体课件
【教学过程】
一、导入新课
1.你能发现规律吗?
2.出示:比一比谁算得快。
32.47÷15=63.79÷5.2=
学生自主计算并订正结果。
3.教师引入:在计算这些题目时,同学们是不是感到很麻烦?这时我们可以使用计算器。用计算器还可以帮助我们探索一些规律呢!
(板书课题:用计算器探索规律)
二、新课学习
1.出示教材例9例题。
让学生用计算器计算下列各题。
订正答案:
1÷11=0.0909… 2÷11=0.1818…
3÷11=0.2727… 4÷11=0.3636…
5÷11=0.4545…
师小结:这些都是循环小数。并引导学生观察、比较,你发现了哪些规律?在小
组内交流讨论。
引导学生说出规律:商是循环小数;循环节都是9的倍数。
2.引导学生按规律写结果:同学们,通过用计算器计算,观察计算结果,我们发现了规律。现在大家能不能不计算,用发现的规律直接写出下面几题的商呢?(出示以下例题)
6÷11=7÷11=8÷11= 9÷1l=
学生汇报得出的结果。引导学生说一说,你是根据什么来写这些商的?
(根据1÷11,2÷11,……,5÷11的结果得出的规律来写商的。)
3.检验:同学们写出的`规律对不对?用计算器来检验一下。
学生自主验证计算结果,与自己得出的结果作比较。
三、结论总结
师:这节课学了什么知识?有什么收获?
引导学生总结:
1.用计算器计算省时省力又很精确。
2.观察得到规律,不用计算器也能很快得出结果。
四、课堂练习
1.算一算,找规律:
46×96= 69×64=
14×82= 28×41=
26×93= 39×62=
①等式左边的因数十位和个位上的数字交换位置就是等式右边的因数。
②两个因数十位上数字的乘积等
于个位上数字的乘积。
2.明辨是非:
(1)被除数和除数同时乘或除以一个相同的数(0除外),商不变。()
(2)一个因数不变,另一因数乘或除以一个数(0除外),积也扩大或缩小相同的倍数。()
(3)因为75÷4=18 3,所以750÷40=18 3。()
(4)两个数相除,被除数扩大3倍,除数缩小3倍,商扩大9倍。()
(5)因为360÷15=24,所以3600÷15=240,360÷5=8。()
3.不计算,运用规律直接填出得数,再用计算器验算。
6×0.7=
6.6×6.7=
6.66×66.7=
6.666×666.7=
想一想6.666×666.7整数部分有几个4,小数部分又是多少?
4.用计算器计算前4题,试着写出后2题的积。
3×7=
3.3×6.7=
3.33×66.7=
3.333×666.7=
3.3333×6666.7=
3.33333×66666.7=
3.333333×666666.7=
你能用发现的规律接着写出下面一个算式吗?
5.用计算器计算下面各题。
1÷7=2÷7=
3÷7=4÷7=
5÷7=6÷7=
(1)你能用发现的规律把后面两道算式的商写出来吗?
(2)你发现了什么?
五、作业布置
1.先用计算器计算前面3题,仔细观察,再试着写出后面的得数。(保留6位小数)
1÷7=2÷7=
3÷7=4÷7=
5÷7=6÷7=
2.根据规律不计算直接写得数。
5×5=25
15×15=225
25×25=625
35×35=
45×45=
55×55=
六、板书设计
用计算器探索规律
计算器:省时、省力、精确
1122÷34=33
111222÷334=333
11112222÷3334=3333
1111122222÷33334=33333
┆
11111112222222÷33333334=333333
单元教学目标:
1.结合具体情境与直观操作,体验分数产生的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象。
2.认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3.探索分数的基本性质,会进行分数的大小比较。
4.能找出10以内两个自然数的公倍数和最小公倍数,能找出100以内两个自然数的公因数和最大公因数,会正确进行约分和通分。
5.体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6.能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性与挑战性。
分数的再认识
教学内容:
北师大版小学数学五年级上册34---35分数的再认识。
教学目标:
1.在具体的情境中,进一步认识分数,发展学生的数感,理解分数的意义。2.结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。3、体验数学与生活的密切联系。
教学重点:
理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
教学难点:
结合具体情境,体会“整体”与“部分”的关系,感受分数的相对性。
教具准备:
22支铅笔、多媒体课件(或1个红苹果、3个青苹果、6个白色圆片、2个红色圆片、34页“画一画”的三种画法图)
教学过程:
一、了解起点,引入新课(3分钟)
1、师:我们三年级的时候认识了分数,能说几个你熟悉的分数吗?(生:,。.。.。.)
2、师:你能选择一个分数说说这个分数的含义吗?(指2人说,同桌说一次。)
3、简单做一总结:就是把一个物体或者一个图形平均分成2份,其中的1份就是,今天我们来继续认识一下分数。(板书课题:分数的再认识。)
二、结合具体情境,深化理解分数的意义
1、活动一:(5分钟)
呈现4个不同颜色的水果(1个红苹果3青苹果。)
师:你能从这些水果中看出分数吗?
生1:红苹果是
师:谁的?
生1:红苹果是整体水果的(是四个苹果的)
生2:青苹果是整体水果的。
师:刚才这个同学说的很好,他说整体水果,你怎么理解呢?
生:就是把1个红苹果和3个青苹果看成一个整体。(板书:一个整体)
师:大家也是这样理解的吗?(是)假如我再给你们一个更为强大的队伍,你还能找到分数吗?
出示6个白色圆片2个红色圆片,让学生观察,写下自己找到的分数,然后指名汇报,要求解释自己所写分数的意义。学生可能出现:、、、、(红、白两色圆片占整体圆片的,师:假如老师拿走八分之八的圆片,其实就是拿走了多少?生:拿走了整体“1”。)
师:原来我们不但可以把一个物体或者图形中的一部分用分数表示出来,而且还可以把几个物品或者图形看成一个整体,然后用分数表示其中的一部分。
2、活动二:(10分钟)
出示三个盒子,分别装有8、6、8支铅笔。
师:这里有三盒铅笔,你能不能从每一盒铅笔中分别拿出整体的?请注意观察,你发现了什么?
请三名学生到前面准备拿铅笔
师:请先说说你打算怎么拿?
生1:我准备把全部铅笔平均分成2份,拿出其中的一份。
生2:我准备用铅笔的总支数除以2,看看得几就拿出几支。
现场组织活动:(请三位同学分别从一堆铅笔中拿出。结果三位学生的结果不一样多,两位学生拿出的是4支,另一位学生拿出的是3支)
师:你发现了什么现象?你有什么疑问?想提什么问题呢?
生:他们拿出的支数有的一样多,有的不一样多,为什么呢?
师:他们都是拿出全部铅笔的,可是拿出来的铅笔却有的一样多,有的不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生交流后全班反馈。
生1:我认为三盒的铅笔总数不一样多。
生2:可能是数错了。
师:请你上来帮助数一数,看看是不是数错了呢?
让学生上来数一数,证实数对了。
师:现在大家的'意见都认为是铅笔的总支数不一样,也就是整体“1”不一样了?
学生都表示同意。
师:现在请台上的三位同学把所有的铅笔都拿出来,告诉大家每个盒子里铅笔的总支数到底是多少支?
生1:我这个盒子里全部的铅笔是8支,全部铅笔的是4支。
生2:我这个盒子里全部的铅笔是6支,全部铅笔的是3支。
生3:我这个盒子里全部的铅笔也是8支,全部铅笔的是4支。
师生一起小结:哦~~原来是盒子里的铅笔数量不同造成的!一盒铅笔的表示的是把这盒铅笔平均分成两份,其中的一份就是这个整体的。但由于分数所对应的整体不同(也就是铅笔的总支数不一样多),所以表示的具体数量也不一样多。
师:喔,原来分数还有这样一个特点,你对它是不是又有了新的认识?(是)
3、说一说(2分钟)
出示教材P34的说一说情境图。
师:根据你对分数新的认识,请你帮助判断一下这两个小朋友看的页数一样多吗?为什么?
指名学生说一说,重点是关注学生的思维过程,以及判断的依据。
4、画一画(5分钟)
师:机灵狗也想和大家一起来学习,可是被一道题目难住了,你们愿意帮助它吗?(课件出示题目)
师:看懂题目了吗?你觉得这三个小朋友画的对吗?为什么?
生:我觉得他们画的� (一个学生说不完整,可以由其他同学补充说明。)
师:哦,原来这个图形只要是4个□就可以了,形状可以不同。你们还有其他画法吗?在作业本上试一试。
学生独立画一画,然后交流展示。注意让学生判断画的是否正确。
三、巩固练习
完成教材P35练一练中的题目。
1、第1题(3分钟)
先让学生独立填一填,在组织学生交流。重点让学生说一说第1、2、3、6个图形的思考过程,进一步加深对分数的认识。(图1是把一个正六边形平均分成六份,取其中的4份,可以用或表示;图2是把一个正方形平均分成8份,其中有两份没有分开,但分数表示的时候要注意应是;图3是12个小圆圈组成的一个整体,蓝色部分占整体的,也可以用表示;图6则是需要旋转,把内圆和外圆组合起来看,用分数或表示。)
2、第2题(2分钟)
让学生独立涂一涂,并说想法,让学生体会涂法的多样性。
3、第3题(4分钟)
学生画一画,并说一说画法,体现画法的多样性,用展示台展示学生作品。然后判断这些图形的大小一样吗?进一步让学生体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
4、第4题(3分钟)
结合“捐零花钱”的实际问题,进一步理解分数的意义,体会分数的相对性。学生读题后,让学生说说自己的想法,关键是让学生解释理由。
四、你知道吗?(1分钟)
学生自己阅读,感受分数的历史悠久和中华民族的聪明才智
五、课堂小结(2分钟)
1、今天你有什么收获?对自己的评价怎么样?
2、学过今天的知识,你想到哪些分数?你是怎么想的?
教学反思:
小学五年级数学教案——分数中的单位“1”的认识教案
教学目标:
1、综合应用图形的面积、计算等知识,解决生活中的问题,增强应用数学的能力与意识。
2、发展实际调查,解决问题的能力。
教学重点:
培养学生的'数学应用意识与解决问题的能力。
教学难点:
如何寻找生活中的数学问题的分析切入点,运用所学知识解决。
教具准备:多媒体课件以及实物投影仪
课时安排:2课时
第一课时:
一、分析并引入课题。
要粉刷我们教室墙壁,需要哪些数据?怎么取得这些数据呢?
请同学们估计一下,教室的长、宽、高各是多少米左右?
二、引出课题,并板书:数学与生活
三、小组合作
(1)测量结束后,将所得到的数据相互交流,看看双方误差多少。
(2)这一步,要求运用所学的数学知识解决这一实际问题,因此,着重引导学生分析求取表面积的计算方法。
四、教师巡视辅导,对个别学困生重点解疑。
一、教学目标
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
二、重点难点
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
三、教学过程
(一)直接揭示课题
1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、小组讨论。
3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、小组内交流、讨论。
4、全班汇报。
a)直接一个一个地数,为了不重复,在图上编号。(数方格法)
b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)
c)用总正方形面积减去白色部分的面积。(大减小法)
d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、师总结求蓝色部分面积的方法。
(三)巩固练习
1、第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第二题。独立解决后班内反馈。
3、第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数。
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
四、板书设计
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4。(化整为零法)
总面积减去白色面积。(大减小法)
五、教学反思
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
[教学内容]精打细算(第2-3页)
[教学目标]
1:理解小数除法的意义。
2:掌握小数除以整数(恰好除尽)的计算方法。
[教学重点]小数除法的意义,小数除以整数(恰好除尽)的计算方法。
[教学难点]商的小数点与被除数的小数点对齐。
[教学过程]
一、导入新课,创设情境,提出问题
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式:11.5÷512.6÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
引导学生结合自己的生活经验和已经掌握的知识先自己想一想,并且尝试计算,然后在小组内讨论交流一下想法。
2、学生交流讨论,老师巡视指导。
3、请小组选派代表汇报讨论结果,指名学生板演。
4、老师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?学生可能会将11.5元转换为115角进行计算,老师应追问:为什么要化成115角进行计算?让学生进一步明确将小数转化成整数进行计算的思想和方法。也可能有学生直接运用竖式进行计算,老师应大胆放手让学生说出自己的想法,引导出“商的小数点与被除数的小数点对齐”。
5、理解算理:师生共同探究“商的小数点为什么要与被除数的小数点对齐”。先让学生说出自己的观点,再进行引导。将11.5元平均分成5份,先将11平均分成5份,每份是2元,还剩1元,再将1元看作10角,加上5角,一共15角,平均分成5份是3角,3的单位是角,写成以元为单位的小数时,3应该写在十分位上,因而小数点在3的前面,正好与被除数的小数点对齐;或个位上的1是10个十分之一,加上十分位上的5,总共是15个十分之一,平均分成5份,每份是3个十分之一,因而小数点应在3的前面。教师视学生回答角度进行引导阐释。
6、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。
7、学生尝试计算乙商店牛奶价格,注意商的小数点与被除数的小数点对齐。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
2、我是小小神算手。
20.4÷496.6÷4255.8÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
四、总结:今天你有什么收获呢?小数除法在竖式计算中有什么要注意的?
[板书设计]
精打细算
甲商店:11.5元=115角11.5÷5=2.3(元)
乙商店:12.9元÷6=2.15(元)
商的小数点要和被除数的小数点对齐。
教学内容:教材第97页练习二十一第9-13题。
教学要求:使学生进一步掌握列方程解应用题的思路,提高
确定数量间相等关系的能力,能正确地根据题里数量之间的相等
关系列方程解数量关系稍复杂的应用题。
教学过程:
一、揭示课题
我们已经学习了列方程解数量关系稍复杂的应用题。请大家
想一想,我们是按怎样的步骤列方程解应用题的?
根据学生回答出示:
(1)设未知数J;
(2)找数量间相等关系列方程;
(3)解方程;
(4)检验写答案。
今天这节课,我们就按这样的步骤练习列方程解应用题。(板书课题)
二、基本训练
1、提问:在这四步里,哪一步最重要?
说明:在列方程解应用题时,要正确地列方程,首先要找准数
量间的相等关系。
2、根据下面的条件,说一说数量之间的相等关系。
(1)杨树和杉树一共360棵。
(2)白兔比灰兔少28只。
(3)甲车比乙车多行45千米。
(4)买轿车比面包车多付8万元。
3、在括号里填上含有字母的式子。
(1)学校舞蹈队有J人,歌咏队的人数是舞蹈队的3倍,歌咏队有()人;舞蹈队和歌咏队一共()人,舞蹈队比歌咏队少()人。
(2)踢毽的和拍球的每组都是工人,踢毽的有5组,拍球的有8组。踢毽的有()人,拍球的有()人;踢毽的比拍球的少()人,踢毽的和拍球的一共()人。
三、列方程解应用题练习
1.做练习二十一第10题。
学生读题,并说一说两题相同和不同的地方。
提问:
第(1)题数量之间有怎样的相等关系?怎样知道的?
第(2)题数量之间有怎样的。相等关系?怎样知道的?
指名两人板演,其余学生做在练习本上。
集体订正,让学生说一说左边每一部分表示什么,是怎样列方程的。
提问:这两小题的方程有什么不同的地方?为什么这两题列的方程不一样?
指出:这两题由于两个条件不同,第(1)题猴子和熊猫一共30只。第(2)题猴子比熊猫多30只。两道题数量之间的相等关系也不同,所以列出的方程就不一样。
2.做练习二十一第1l题。
让学生读题,并说一说两题相同和不同的地方。
提问:这两题数量之间的相等关系是怎样的?为什么数量之间的相等关系都是九月份水费减十月份水费等于十月份比九月份少的水费?
指名两人板演,其余学生做在练习本上。
集体订正,让学生说说列方程时是怎样想的。
提问:这两题数量之间的相等关系一样,为什么列出的方程不一样?
说出:方程要根据数量之间的相等关系来列,但由于题里条件和问题不一样,所以用字母表示的十月份水费、九月份水费的式子就不同,列的方程也就不一样。
3.做练习二十一第13题。
读题。
提问:第一步干什么?要设哪种笔的单价为J元?那么,一支钢笔多少元?3支圆珠笔多少元?
第二步要干什么?现在请大家在练习本上设未知数J,再列出方程。
提问:“4.5J”表示什么?“3工”表示什么?方程左边和右边为什么相等?
四、课堂小结
这节课主要是什么内容?列方程解应用题的步骤怎样?列方程解应用题的关键是什么?
强调:列方程解应用题,一定要找准数量之间的相等关系,根据条件和问题表示出各个数量,依据数量之间的相等关系列出方程。
五、布置作业
课堂作业:做完练习二十一第13题;练习二十一第9题第二行,第12题。
家庭作业:练习二十一第9题第一行。
教学目标
1、通过直观的操作活动,理解异分母分数加减法的算理。
2、能正确计算异分母分数的加减法。
教学重点
异分母分数加减法的计算法则。
教学难点
把分母不同的分数通过通分化成分母相同的分数。
教具、学具
学生准备几张用来折纸的纸张。
教师指导与教学过程
学生学习活动过程
设计意图
1、复习引题
1、在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?
2、先看书上的折纸活动
师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式
3、新授
1、估一估他们用了这张纸的几分之几?
2、再算一算他们用了这张纸的几分之几?
3、重点教学加的计算教师引导学生理解要先通分然后才能计算的算理。
口算。
2/7+3/7=5/6+1/6=
13/14-3/14=
1/12+5/12=
同桌的两个同学也像那两个同学一样折一折纸,并列出算式:
1/2+1/4=
通过折纸来估计
小组讨论书上两幅图的计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。
回忆同分母分数加减法的计算方法。
通过折纸学生直观的认识到异分母分数加减计算的学习必要性。
通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。
教师指导与教学过程
学生学习活动过程
设计意图
4、总结异分母分数加法的计算法则。
5、自学异分母分数减法
学生自学,教师巡回指导。
4、巩固练习
Ρ65练一练
5、全课总结
学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。
学生自己看书学习
第(2)题小红比小明多用了这张纸的几分之几?
根据加法的法则自己总结法则。
学生独立完成第1题教师指名回答说说是怎么想的
培养学生总结归纳知识的能力。
在独立探索中掌握异分母分数减法的计算方法。
学习知识的归纳总结
板书设计:折纸
异分母减法的计算方法:
分母不相同的分数相加减,要先通分,化成相同的分母,再加减。
练习
教学目标:
1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。
3、通过一系列“自主探究————得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
分数除以整数计算法则的推导过程。
教学准备:
多媒体课件、长方形纸等。
教学过程:
一、旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
二、创设情境,理解意义
展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。
2、汇报
三、大胆猜想
学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。
四、再次探究
1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。
2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。
3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
1.基础知识:
(1)通过合理的分类,并借助直观,让学生体会正。负数与0的关系。
(2)要借助直线上的点,使学生初步体会负数的大小。
(3)要让学生经历公式推导的完整过程。
(4)把握探索小数性质和小数大小比较方法的思路。
(5)联系整数加。减法的计算方法理解小数点对齐的道理。
(6)要鼓励学生画图列举寻找规律。
(7)理解用计算器探索小数点移动规律的活动线索。
(8)引导学生依据具体数量关系列出乘。除法算式,逐步丰富对乘除法运算的理解。
(9)要让学生感受复式统计表与复式条形统计图在描述数据方面的特点。
2.基本技能:
充分利用新旧知识间的联系,联系学生的生活实际,通过知识间的迁移。类推。比较。拓展,将新知识点与学生原有的知识体系联系起来进行教与学。
3.情感态度和价值观:
(1)使学生积极主动参与获取知识的全过程,让他们认识到数学的价值,生活中离不开数学,使他们喜欢数学,乐学数学。
(2)形成对数学的浓厚兴趣,树立学生自尊心和自信心,提高学生的相互合作能力和人际交往能力。
(3)引导反思促进情感态度的发展。教学时注意引导学生反思当天的学习活动,适时教育学生要积极参与学习活动。学习上要实事求是,并以肯定的方式强化学生良好的学习态度。
(一)教学内容:
本学期的教学内容共有:
1.负数的初步认识。
2.多边形的面积。
3.小数的意义和性质。
4.小数加法和减法。
5.小数乘法和除法。
6.统计表和条形统计图(二)
7.解决问题的策略。
8.用字母表示数。
9.整理与复习。
(二)学生分析:
五年级大部分的学生学习态度端正,有着良好的学习习惯,上课时都能积极思考,能够主动进行学习。部分学生动手能力差,缺乏发散思维的训练;分析问题。理解问题。解决问题的能力较差;个别学生能力较差,计算和解决问题都存在困难。还有的学生学习态度不够端正,做题马虎。书写不认真。不能按时完成作业。从上学期的平时表现和知识质量检测的情况看,学生的成绩从高到低直线分布基本均匀,有三。四个同学基础和学习能力较差,针对这些情况,本学年在重点抓好基础知识教学的同时,加强后进生的辅导和优等生的指导工作,全面提高本班的整体教学成绩。
教学措施
新课改要求我们以提高国民素质为综旨,全面推进素质教育,培养学生的创新精神和实践能力。为实现这一目标,我将从以下几个方面具体做起:
(一)认真学习新《课程标准》,领会精神,吃透教材,认真备课,能更好完成教案中个性化补充,认真细致地批改作业,对学困生实行面批面改。
(二)切实加强基础知识和基本技能的教学。
1.数学基础知识的理解。
2.处理好基本训练与创造性思维发展及后继学习的关系。
(三)重视引导学生自主探索,培养学生的创新意识与合作学习能力。
1.本册教材设计了适量探索性和开放性的数学问题,给学生提供自主探索的机会和一个比较充分的思考空间。培养学生肯于钻研。善于思考。勤于动手的科学态度。
2.教师要关注学生的个体差异,尊重学生的创造精神。对学生在探索过程中遇到的'问题,要适时,有效的帮助和引导。
(四)重视培养学生的应用意识和实践能力。
1.数学教学应体现“从问题情境出发,建立模型,寻求结论,应用与推广”的基本过程。
2.在日常的数学活动中要注意小课题研究和实习作业等实践活动,对这方面的内容不但不能随意删减,而且要加强这方面内容安排的密度和强度。
(五)把握教学要求,促进学生发展。
1.教师要善于驾驭教材,把握知识的重点和难点以及知识间的内在联系,根据学生的年龄特点和教学要求,开展教学活动。
2.要注意在直观感知广泛的背景下,通过自身体验在分析。整理的过程中学习概念,不要用死记硬背的方法。
3.加强学法指导,通过探究。交流。指导。反馈。总结的学习过程,培养学生学习兴趣,提高自学能力
教学内容:
P10例6、做一做,P13练习二第1—3题。
教学目的:
1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点:
用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:
根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程:
一、激发:
1、口算。
1.2×0.3 、0.7×0.5 、0.21×0.8 、1.8×0.5 、1—0.82 、1.3+0.74、 1.25×8 、0.25×0.4、 0.4×0.4 、0.89×1 、0.11×0.6、 80×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数保留一位小数保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)
3.4×0.91=3。094积保留一位小数是(),保留两位小数是()。
7、尝试后练习:
▲P10页做一做1。计算下面各题。
0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)
▲判断,并改错。
10.286×0.32=3.29(保留两位小数)
3.27×1.5=4.95、 1.78×0.45≈0.80(保留两位小数)
三、运用
1、一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?
虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。
2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3、059 3.578 3.574 3.583 3.585
四、体验:谁来小结一下今天所学的内容?
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:
初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个, 第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。