纳米科技论文13篇

《纳米科技论文13篇》由精心整编,希望在【纳米技术论文】的写作上带给您相应的帮助与启发。

纳米技术论文 1

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维。这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等� 德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻性功能涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献

[1]桥本和仁等[J].现代化工。1996(8):25~28.

纳米技术论文 2

研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。

1研究形状和趋势

纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。

纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。

根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(NSF)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国DARPA(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近匕年来制定了各种计划用于纳米科技的研究,例如Ogala计划、ERATO计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增

加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。

2国际动态和发展战略

1999年7月8日《自然》(400卷)重要消息题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林

斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。

最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。

面对这种挑战的形势,中国在这个领域的研究能不能继续保持第二阶梯的前列位置,能不能在下世纪前周年,在纳米材料和技术的市场中占有一定比例的份额,这是值得我们深思的重要问题。中国科学院在我国纳米材料研究占有极其重要的地位,在纳米粉体的合成、纳米金属和纳米陶瓷体材料的制备、纳米碳管定向生长和超长纳米碳管的合成、纳米同轴电缆的制备和合成、有序阵列纳米体系的设计和合成、新合成方法的创新等在国内外都做了有影响的工作。在《自然》上1篇,《科学》上4篇,影响因子在3以上的论文6篇,申请发明专利28项,已获发明专利7项,有5项专利获得实施,扶植了国内一些纳米产业,这些都为进一步工作奠定了基础。

为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。

在富有挑战的对世纪,世界各国都对富有战略意义的纳米科技领域予以足够的重视,特别是发达国家都从战略的高度部署纳米材料和纳米科技的研究,目的是提高在未来10年乃至20年在国际中的竞争地位。从各国对纳米材料和纳米科技的部署来看,发展纳米材料和纳米科技的战略是:()以未来的经济振兴和国家实力的需求为目标,牵引纳米材料的基础研究、应用开发研究;(2)组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;(3)重视发展纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米材料和纳米技术在环境、能源和信息等重要领域的应用,实现跨越式的发展。

3国内研究进展

我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。

目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学烹北大学、西安交通大学、天津大学。青岛化工学院、华东师范大学\华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学

研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属Gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常Hall-Petch效应。

近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到3mmX3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是唯一维纳米丝和纳米电缆:应用溶胶一凝胶与碳热还原相结合的新方法,首次合成了碳化或(TaC)纳米丝外包覆绝缘体SIOZ和TaC纳米丝外包覆石墨的纳米电缆,以及以S江纳米丝为芯的纳米电缆,当前在国际上仅少数研究组能合成这种材料。该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(CrN)、磷化钻(COZP)和硫化锑(Sb。S。)纳米微晶,在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金?从四氯化碳(CC14)制成金刚石”~文,予以高度评价。

我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才作出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。

在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导CVD、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、MCM-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。

纳米技术论文范文 3

1纳米孔生物技术的改进

从嵌入溶血素蛋白通道对血脂的试验研究开始,研究者们在过去10年中开发和探索了多种类型的纳米孔。α-溶血素是一种能天然性地连接到细胞膜中继而导致细胞溶解的蛋白质,它第一个被用来做成生物纳米孔模型。模型中,一层生物膜将溶液分为2个区域,α-溶血素蛋白嵌入生物膜中形成纳米孔。当DNA分子穿过纳米孔时阻断电流会发生变化,这时灵敏电子元件就能检测电流的变化。但是,由于4种碱基的理化性质比较接近,所以读取序列实际上比想象的困难得多。此外,有效减少电子噪声仍旧是个挑战,通过降低DNA的位移速率可以部分减少噪声。最近出现了新形式的仿生纳米孔,其中包括丝蛋白毛孔[1]和仿生核孔复合物[2]。跨孔形成的侧电极使通过纳米孔转运的生物分子的电子检测成为可能[3]。采用等离子体减薄[4]和离子束雕刻技术[5]得到的超薄纳米孔也被开发出来。通过耦合到纳米孔上的扫描探针显微镜[6]和硅纳米线晶体管[7],证实了这种使用静电效应和场效应的替代检测方式的可行性。石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,目前已� 石墨烯的带电特性、韧度、原子厚度以及其电子抗渗性能,使得其成为纳米孔DNA序列测序的热点材料。石墨烯薄片膜[9]和自对准碳素电击[10]形成方面的新进展,促进了碳纳米结构与纳米孔技术的整合。对进入纳米孔分子的自动捕捉可实现分子结构和动力学的检测分析。这项改进技术已经应用于对孔泡附近的扩散现象研究,这也是未来生物研究的基础。对金属孔上离子转运的研究,例如金表面的纳米孔[11],可

2纳米孔在生物技术上的应用

迄今为止,DNA是纳米孔研究中最常见的聚合物,脂质嵌入式离子通道检测DNA是这项研究开创性的示范。最近,固态纳米孔已用于检测核小体亚结构的不同[13]以及RNA聚合酶催化DNA转录的关键部分,为了解染色体的结构和转录研究创造了新机遇。生物纳米孔在富含鸟嘌呤的G-四链体检测方面的应用,对基因组学和表观遗传学的发展起着重要的推动作用[14]。脱碱基位点也可以用纳米孔动态检测,通过阻断含离子载体的电解质溶液,高压辅助下的蛋白质易位以及使用配体修饰纳米孔蛋白的不同都得到了论证[15]。某些蛋白质在转运时发生“解压”,转运过程便可用 许多这种蛋白质的解压行为已经得到了研究,纳米孔可作为无需标记的高效力谱仪[16]动态使用。重要的神经传导物也得到了动态实时区分,以期用于研究大脑对药物的化学反应[17]。与其检测技术相比,纳米孔更具发展前景,其高效、快速且价格低廉,准确度和检测性能良好。其他纳米孔结构为生物领域提供了多种新研究和技术。大型固态纳米孔可以用来动态地捕获释放的细菌,为动态捕获单细胞提供了更快速低廉的方法。使用脂肽包被的固态纳米孔,可以探测到DNA与邻近孔膜的相互作用[18]。热反应聚合物的提出推进了智能纳米孔的发展,智能纳米孔可 DNA测序纳米孔的研究也取得了进展,一项最新的分子动力学研究显示,运用DNA聚合酶作为棘轮,通过控制石墨烯纳米孔上DNA单链的转运,可获得核苷酸序列的高精读数。使用溶血素中的链霉亲和素可选择性固定DNA链,可高分辨率区分孔上不同几何位置的核酸。P-n半导体结可放慢DNA易位的速度,移位过程中这种半导体结可以动态控制电压。运用新型的基于CMSO的放大器,可实现亚微秒时间内的电流检测。关于DNA测序的理论研究,为解决上述提到的离子电流测定速度的限制问题提出了可行性的建议和方法。模拟显示,石墨烯碳纳米带上的纳米孔可以利用孔隙边缘的电流密度,从而产生较高的分辨率。垂直于纳米通道放置的石墨烯碳纳米带上的电导变化,也被建议作为DNA碱基易位测序设备。

3结语

纳米技术论文 4

目前,纳米技术已广泛应用于材料学、电子学等领域,并逐渐向生物医学领域渗透。2000年,杨氏等[1]在通过研究不同粒径(≤100、150、200、500 nm)的矿物中药雄黄和石决明(纳米、微米和常态)对药效的尺寸效应后认为,利用改变中药颗粒的单元尺寸(使其小到一定程度)以改变其物理状态,可以显著改变中药制剂产生的药理效应,并由此首次提出了纳米中药的概念。此后,国内学者开始了纳米技术在中药领域的应用研究,并取得了一些突破性进展,申请了许多有关纳米中药的专利。纳米技术的应用对中药的研究和开发产生了巨大的推动作用。

1 纳米技术应用于中药研究与开发的意义

1.1 有助于对中医药基础理论研究的突破

1.1.1 揭示中药“归经”的实质 中药归经是中药选择性地归属于机体疾病状态的某些脏腑经络的属性,是药物作用的定位概念。传统的归经理论没有阐明归经所依据的经络、脏腑的实质,随着时代的发展,它已经难以继续指导中药新药的研究和开发。中药归经理论的进一步研究应该是全面探讨归经的物质基础,并从分子水平阐明这一理论所涉及的现代生理、生化、药理、病理等问题,揭示归经的实质。目前,中药归经理论实验研究的其中一类思路是观测中药有效成分在体内的分布及作用部位[2]。随着纳米中药粒子或纳米中药微胶囊的发明,可以利用其控释效应,使中药有效成分恒速稳定地作用于动物模型或人体的作用器官或特定靶组织,并较长时间地维持其有效的浓度,从而较好地确定药物主要作用的某些生理系统,揭示中药归经的实质。

1.1.2 进一步完善中药“升降沉浮”理论

中药的“升降沉浮”是指药物作用于人体的趋势。升降沉浮作为用药的基本原则,它与临床治疗有着密切的关系。在临床治疗时,需根据药物升降沉浮的不同特性选用相应的药物。传统理论认为,代赭石、半夏等能引药向下,作用趋势向下;人参、黄芪等能益气升提,作用趋势向上;金银花、细辛等可作升浮药;大黄、黄连等可作沉降药。因此,我们可以将纳米级的这些中药作用于生理器官,跟踪其作用趋向,确定其“升降”或“沉浮”。

1.1.3 揭示“五脏相音”的实质

五脏相音理论认为,五脏相应于不同的声音,五脏脾、肺、肝、心、肾相应于五音宫、商、角、徵、羽,可以根据人们声音的变化, 2004年,德国gimzewski教授[4]在《science》杂志上发表了其研究成果,利用原子力显微镜(atomic force microscope)精确地测知了单细胞细胞壁上的任何振动,并把它们转换为声音,开创了基于纳米水平的细胞声学,也开创了一个新的高科技研究领域——声音与疾病的关系。这与《黄帝内经》中论述的宏观意义上的脏腑声音、辨色听音察体诊断疾病、以声音区分阴阳并进行饮食和经络调理以达到治未病的理论具有惊人的相似之处[5]。因此,纳米技术的应用,将可能揭开中医“五脏相音”理论的神秘面纱,以更好地指导中药新药的研究和开发。

1.2 有助于提高制剂质量和水平,促进中药新产品的开发

1.2.1 改善传统制剂工艺,丰富中药剂型,提高制剂质量和水平

采用传统的水提或醇提的制剂工艺容易破坏中药的生物活性成分及有效成分,而一些与纳米技术相关的制剂技术的应用,如分子包合技术、脂质体技术、固体分散技术、固体脂质纳米粒技术、聚合物纳米粒技术和微乳技术等,不仅可以极大地丰富中药传统的以汤、丸、散、膏、

1.2.2 增加新功效,促进中药新产品的开发

纳米中药的量子尺寸效应和表面效应将导致其物理化学性质、生物活性及药理性质发生根本的变化,从而赋予传统中药全新的药效,拓展治疗范围[3]。例如,纳米化后的牛黄和灵芝都呈现普通牛黄和普通灵芝不具有的药效。若将纳米中药应用到保健品或化妆品中,将促进中药材保健品、化妆品工业的发展,拓展中药的使用范围。此外,若将纳米中药作病毒诱导物,将可能实现不含抗生素的长效广谱抗菌功效和抗病毒功效,开发出新一代的广谱抗菌药物。总之,纳米技术在中药领域的应用,对加速中药新药的研制与开发具有重要的意义。

1.2.3 促进中药制剂的标准化和国际化,提升中药的市场竞争力

中药的多种新剂型,可以使其使用方法更符合现代医学标准,利于其在国际市场上的推广。将纳米技术引入中药的研究与开发,能在纳米中药的制药技术、药效等诸方面建立一系列具有自主知识产权的专利技术和创新方法,能使中药的质量评价有国际化的标准,从而有助于提升中药的市场竞争力。

1.3 有助于提高中药的生物利用度和疗效

中药一般都含有较多的木质素、纤维、胶质、脂肪、糖类等,用传统方法粉碎往往难以达到细胞破壁,影响了中药材中有效成分的浸出,妨碍了药物在生物体内的吸收。中药粒子的纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高药物的生物利用度;还可以利用纳米化的中药所具有的缓释功能和靶向给药功能,提高药效。另外,也可以利用中药的纳米包覆技术,改变一些中药制剂的亲水亲油性,提高中药的临床疗效。这将有利于减少用药量,节约有限的中药资源。

2 存在的问题

2.1 与中医“辨证用药”原则相悖

中药复方的药理作用机理较复杂,往往多元反应同时进行。中药从单味药到组合成方,不仅量变,而且质变,中药在不同复方中的功效可能有所不同,这与药物在不同的复方中可能发生不同的化学反应有关。随着纳米技术的应用,中药成分之间的某些物理化学反应将受到控制或发生根本性的变化,使得药物脱离了复杂的化学环境或使化学环境更加复杂,导致中药有效成分和药效的不确定性,并影响药物的稳定性,从而可能改变药物的功效,与中医“辨证用药”的原则相悖。

2.2 与中医药“价廉”的特点相悖

纳米技术在中药制备领域的应用将极大地提高其生产成本,势必会影响到中药的销售价格,使原本以质优价廉取胜的中药因价格因素而难以推广,也会影响到我国具有中国特色的医疗卫生保障体系的建设。

2.3 一些基础性研究工作有待加强

①纳米中药制备的理论与技术研究,包括适合中药制药行业使用的系列超细颗粒装备及配套设备的研制和产业化工作;②纳米中药质量评价和质量控制方法研究,建立纳米中药药理、疗效、病理学和毒理学的理论与系统评价方法;③纳米中药新产品开发的理论和技术研究以及产业化推广工作。

3 结语

纳米技术是21世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。随着纳米技术在中药研究与开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。

【参考文献】

[1] 杨祥良。基于纳米技术的中药基础问题研究[j].华中理工大学学报,2000, 28(12):104-105.

[2] 赵宗江,胡会欣,张新雪。中药归经理论现代化研究[j].北京中医药大学学报,2002,25(1):5-7.

[3] 高也陶,李捷玮,潘慧巍,等。五脏相音——《黄帝内经》失传2000多年的理论和技术的现代研究[j].医学与哲学(人文社会医学版),2006, 27(9):51-53.

[4] pelling ae, sehati s, gralla eb, et al. local nanomechanical motion of the cell wall of saccharomyces cerevisiae[j]. science,

2004,305(5687):1147-1150.

纳米技术论文 5

关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

V.展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。这些评判方法得能够用来评判制备出的结构是否满足设计要求以及它们是否处于可接受的误差范围内。因此,除怎样能够将材料刻制成特征尺寸在1-100nm尺寸范围结构的问题外,还有两个重要的问题,那就是我们想要制备的哪些种类的新结构能充分利用在小尺度条件下所展现的量子效应,以及怎样表征所制备出来的结构。电子工业正面临双重挑战,首先要克服将器件尺寸缩小到100nm以下的技术困难,第二个困难是需要发明新器件以便能够取代尺度缩小到其操作机制崩溃的现有器件。因为目前还不清楚哪种结构将能够取代现在的电子器件,尽管传统光刻技术在刻制纳米结构上的局限性,但现在谈论摒弃传统技术尚为之过早。光电子工业则面对相对容易的困难,它的困难主要集中在图形的刻制问题上。这仅仅影响器件有源区的尺寸以及几何结构,但不存在需要克服的在器件运行机制上的基本极限。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找MOS晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

纳米技术论文 6

【论文关键词】电子技术;理论与应用;近似计算;静态分析

【论文摘要】本文首先探讨了近似计算在静态分析中的应用问题,其次分析了纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册,最后电子技术在时间与频率标准中的应用进行了相关的研究。因此,本文具有深刻的理论意义和广泛的实际应用价值。

一、近似计算在静态分析中的应用

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,PurdueUniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

1952年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(UT)和历书时(ET)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10-9。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133Cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10-12—10-14量级,即30万年——300万年差1秒)。1967年第13届国际计量大会正式通过决议,规定:“一秒等于133Cs原子基态两超精细能级跃迁的9192631770个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。

纳米技术论文 7

[关键词]纳米粒子;吸附;膜处理

安全饮用水被认为是一个国家发展的重要指标,根据最近的报告,世界各地约有6.63亿人无法获得安全饮用水[1]。多年来,污染和滥用地表水导致全球50%以上人口依赖地下水作为饮用水。然而,地下水是氟化物、砷、铅、铬、硝酸盐、硒、氯化物、重金属以及放射性物质的避风港,这些离子极大地损害了地下水的质量,导致了健康问题[2]。此外,腺病毒、甲型肝炎、轮状病毒等病原体通常存在于地表水和地下水中,必须有效地灭活才能提供安全的水。饮用水安全是根据国家标准或国际准则来判断的,卫生组织的饮用水质量准则是最重要的准则之一,并由许多发展中国家实施。报告表明,在依赖改良水源的估计62亿人中,超过10亿人继续使用不安全的水。联合国可持续发展目标(SDG6)之一是到2030年实现人人享有安全和负担得起的饮用水水处理技术的进步可以在实现这一目标方面发挥作用。在传统上用于饮用水处理的各种技术中,砂(颗粒介质)过滤是最古老的处理技术之一。砂过滤最初被认为是通过粒子间间隙的尺寸排除工作的。然而,后来的研究表明,慢沙过滤器(SSF)在富含细菌种群的沙粒周围形成一种活性生物膜(称为Schmutzdecke),从而提高了介质的过滤能力。颗粒介质过滤的应用面临的挑战之一是,除了易受事故和流量变化的影响外,它无法有效地去除化学污染物。其他一些常规使用的技术包括化学氧化、吸附、化学沉淀/凝固、离子交换等等。最常见的化学氧化剂是氯,它为去除病原体提供了有效和坚固的屏障。另一方面,化学沉淀通过添加反离子来降低离子污染物的溶解度。这通常是絮凝和沉淀或过滤。近年来,人们对纳米粒子作为吸附剂在水处理中的应用越来越感兴趣。纳米技术显示出巨大的前景,作为处理持久性和新兴污染物的最佳可行方法[3]。纳米材料吸附与传统吸附剂相比,具有吸引力的替代品,因为它们具有较高的长径比,增强了反应活性,进而转化为较高的吸附容量。此外,纳米吸附剂还提供了额外的可能性,如在家庭一级以不同形式使用的可能性,例如,以粉末形式使用,涂覆在衬底上或在过滤器中使用等。颗粒的较小尺寸也提供了构建紧凑处理系统的可能性。最近的研究还表明,纳米粒子可以被工程化,同时针对多种污染物,从而可能降低处理成本。然而,人们对纳米材料的安全处置及其对公共健康和生态系统的潜在风险还表示担忧。因此,本综述详细介绍了在水处理中使用纳米粒子的现有技术。虽然对纳米粒子在水处理中的应用进行了大量的研究,但几乎没有任何全面的评论对这一主题进行批判性分析,本文试图填补这一空白。

1纳米粒子在水处理中的应用

用于环境保护和水处理的新型纳米材料的开发和使用近年来受到了广泛的关注,因为它们的表面积与体积比更大,粒径更小[4]。纳米材料在水处理中的四个主要应用领域是(A)吸附去除,(B)催化降解,(C)消毒和(D)膜过滤。其中,吸附去除污染物和使用纳米材料消毒是主要内容。纳米技术使水处理做法有望克服现有技术目前面临的主要挑战,并为水的经济利用提供新的处理方法。

2吸附去除

不同种类的纳米粒子被用于吸附去除研究,即用于去除砷的铁基纳米粒子、用于去除氟化物的碳和铝基纳米材料等[2]。本文综述了在各种使用点(POU)饮用水处理系统中常用的纳米吸附剂。

2.1氟化物的去除

碳纳米管是一种有趣的纳米材料[5-6],由于其高的机械强度和导电性而得到了广泛的研究。碳纳米管与其他纳米材料一起被广泛应用于从水中去除氟化物。最近改性的多壁碳纳米管被广泛用于去除水中的一些重金属。

2.2重金属的去除

水源中重金属的存在是一种全球威胁[7],有些已知有毒和致癌。已知铅、砷、镉、铬、硒、汞和钴等重金属离子会损害水质,而且已知其毒性超过允许的限度。吸附是一种常用的重金属去除技术,由于它是一种成熟的技术,成本低,效果好,因此对家庭水处理更有吸引力。铁基纳米粒子是最常见的用于重金属去除的纳米吸附剂。据报道,砷污染影响到全世界约1.5亿人,在大约70个不同的国家。将磷灰石纳米粒子掺入聚丙烯滤筒过滤器中,有效地用于去除砷。初步试验表明,滤料对中等砷浓度(30~40ppb)的泉水的处理效率较高。平均需要100毫克赤铁矿纳米粒子来处理每升泉水[8]。

2.3去除杀虫剂

尽管银纳米粒子的主要作用是在消毒领域,但它们也被用于去除卤化农药和有机物,该技术已被印度技术研究所马德拉斯的研究人员申请饮用水净化专利[9]。嵌入在活性氧化铝中的银纳米粒子用于有效去除卤化有机物和农药。通过纳米粒子表面与农药之间的新型化学反应,实现了农药的去除。杀虫剂中的大部分要么是卤化碳,要么是含硫的分子。例如,卤化碳在室温下与贵纳米粒子相互作用后被降解为金属卤化物和非晶态碳。观察到,当加入农药的水(50ppb浓度)通过过滤器时,可以获得无农药水。由于银纳米粒子以其抗菌性能而闻名,因此过滤器也很可能是有效的消毒工具。然而目前市场上没有这种产品。

3膜过滤

用于饮用水处理的膜是一个快速增长的领域[10]。膜为水中的不良成分提供了物理屏障。然而,膜污染是其有效应用的最大障碍之一。纳米技术正被用于开发创新的聚合物和陶瓷膜,以提高膜过滤系统的性能。理论上,纳米粒子在膜中的掺入提供了污垢阻力以及消毒和污染物降解的额外好处,这取决于所使用的纳米材料。纳滤膜,如NF90和NF400,已被用来去除地下水中的氟化物,在10bar的压力下,氟去除率为98%。商业上可用的NF膜也被修饰使用聚电解质薄膜,以提高膜的选择性。银纳米粒子也被浸渍到硝化纤维素膜上,用于去除细菌病原体。如Aquapure,Kinetico和QSI纳米使用浸渍银纳米粒子的膜,并显示99.9%的去除细菌,病毒和原生动物。亲水性金属氧化物纳米粒子通常被添加到膜中,通过增加亲水性来减少污垢。例如,氧化铝、二氧化钛、二氧化硅和沸石纳米粒子被添加到聚合物超滤膜中,已经进行了实验室规模的研究,以确定碳纳米管膜在水处理中的潜力,这些纳米管膜已被研究为可有效的去除细菌,病毒,浊度和有机污染物。因为这些过滤器需要较少的能量,高渗透性,更耐用,更容易清洁和重复使用。这些膜具有很好的市场前景。

4催化降解

光催化降解常用的纳米材料有二氧化钛,铈和碳纳米管[11]。其中,二氧化钛纳米粒子由于其稳定性、摄入无毒、成本低,在水处理中得到了广泛的探索。二氧化钛纳米颗粒在水、紫外线照射和氧气的存在下产生自由基,随后分解成毒性较小的碳化合物。钛可以用作浆料,涂层作为薄膜或膜。二氧化钛纳米粒子对有机污染物的光催化降解已被用于工业规模的净水系统。然而,纳米粒子在光催化降解中的大规模应用还存在一些技术挑战需要解决:(1)高效的光催化反应器设计和(2)催化剂利用可见光的优化。

5纳米粒子的安全处置环境影响

基于纳米粒子的POU系统在饮用水处理领域具有巨大的优势。纳米材料的影响不仅需要从其应用的角度来评估,而且需要从其释放到环境中的潜在毒性效应的角度来评估。有研究表明,特定纳米材料性能和毒性极限的影响取决于纳米粒子的类型和大小[12]。纳米粒子在环境中的行为也取决于许多因素,如pH、周围介质、离子浓度、表面封盖剂和粒径。现有信息不足以确定饮用水中特定纳米材料的最大允许浓度。尽管有许多评估纳米结构的工具,纳米毒理学仍然需要在纳米尺度上精确地测定生物系统和纳米材料[4]。因此,对纳米粒子的释放进行仔细的控制和严格的指导是至关重要的。然而,虽然已经提出了安全措施,但没有处理纳米毒性的具体准则。金属离子从纳米材料中溶解是另一个主要问题,检测其释放是一个挑战,需要复杂、昂贵的技术和具有超低检测水平的分析方法。在环境机构制定更明确的纳米材料释放指南之前,处置管理的最佳方式是纳米粒子的回收利用。使用过的纳米颗粒可用于制造砖块或填充在钢瓶中,并在地球深处作为填埋场处置。再生金属离子也可用于其他材料的合成。利用天然沸石从废废物中固存重金属的方法。同样的方法可以进一步探索废纳米吸附剂的污泥。研究人员还探索了各种方法,以水泥、砖块、聚合物基质的形式固化和稳定废弃的重金属废物,最终将在填埋场处置。

6总结和结论

纳米技术论文 8

关键词:纳米 环境 健康 公正分配

中图分类号:X9 文献标识码:A 文章编号:1007-3973(2012)002-185-02

在电影《食破天惊》中,男主角弗林特为自己只有沙丁鱼吃的家乡发明了一款依据水分子变异便什么食物都能产出的机器。该电影的导演或者编剧也许并不知道有了纳米技术,这样的机器可能会以另外的形式成为现实。后来机器的失控给小镇带去了一些麻烦,在这幻想里,我们看到了纳米技术可能带来的巨大利益和巨大灾难。作为一门交叉学科,纳米技术涉及的范围十分广泛,在军事、生物、医学、化学、环境、电子、信息、分子组装等领域都有听到过关于纳米的发展。世界主要发达国家,英、美、日、德等都将发展纳米科技作为自己新世纪的战略项目。在纳米技术还没有引起如工业革命那般的巨大影响时,人们吸取了工业革命的教训,对纳米技术的可行性进行了各种考察,近年来也越来越关注纳米技术的伦理问题了。下面我们将探讨纳米技术带来的两大伦理问题。

1 人类健康和环境问题

根据美国国家纳米技术行动计划,纳米技术的社会和伦理问题主要包括三个问题,其中一个便是纳米技术的环境、健康和安全议题。纳米技术对人类健康和环境的毒性及风险,主要包括纳米微粒的危害和暴露风险的两个焦点。纳米技术作为一个全新的领域在给人类带来巨大机遇的同时,也带来了巨大的潜在风险。纳米新材料具有了全新的特性,并且可以做到无孔不入,特别是对人和动物这样的有机组织,不可回收的纳米粒子可以穿越自然的屏障排放到包括有机体在内的环境中,还可能对包括人自身的有机体造成实质改变。2002年,Erosion technology and Concentration行动小组(ETC)呼吁政府颁布法令禁止纳米材料以及纳米材料的商业生产。面对ETC的禁止呼声,担心纳米技术的发展受到阻碍的专家们,旨在缩小纳米技术与伦理之间的差距。王国豫教授等指出,纳米伦理的兴起首先是因为纳米材料的安全问题。安全是人们自由生活的保障,是社会人人都应享有,不应被侵犯的权利,是“正义的最低限度要求。”而我们要鉴定的安全,首先便是人的自身安全。山西大学科技哲学研究中心的费多益认为材料变成纳米级后,活性、毒性都更加的大。如果这材料暴露在空气中,无疑对可能接触的人和环境都会带去破坏。纳米技术的发展,使得接触纳米材料的人群从研发人员扩大到了产业劳动者和消费者。2009年北京朝阳医院宋玉果课题组对一起职业中毒死亡事故进行调查,发现死去的两名女工肺部及肺盥洗液中均检出了30nm尺寸的颗粒物,课题� 工人是在原材料生产场地长时间接触高浓度纳米材料的人群,在生产场地的呼吸与皮肤接触都使他们暴露在可能的危险中。紧接着在加工的过程中,工人们也可能以同样的方式接触到纳米材料,并且无论是原材料生产还是产品加工生产,工厂都有可能将生产的废气、废料排入环境中。最后,消费者通过使用纳米材料化妆品和体育用品进行皮肤接触,使用过后的产品也会随生活垃圾进入环境。

当然,上述的风险只有在纳米颗粒具有毒性并且有暴露发生时才会存在。那么,纳米微粒是否存在毒性?尽管关于工程纳米材料的人体健康以及环境风险的研究正在进行,但是研究成果很少公布,在波兰华沙的某研究小组称“在含有碳纳米管的尘埃中工作不会产生太大的健康问题”。NASA的研究人员却发现,与同等质量的炭黑或石英相比,“碳纳米管如果被吸入肺部,会表现出更强的毒性”。杜邦公司则发现,当暴露于高浓度的单臂纳米管的环境中时,有一部分小老鼠会死亡,但是存活下来的老鼠并没有显示出任何炎症反应。研究发现,纳米材料的毒性是极其不稳定不确定的因素。种种不确定因素聚集起来,就形成了“评估人体健康风险时几个数量级的不确定性”。许多毒理学家都承认毒性评估“非常不准确”。Rice大学生物及环境纳米技术中心主任Vicki Colivin博士在2003年向国会的陈述中概括了这一领域的不确定性:“近年来,如果你曾使用过防晒霜,那么你的皮肤就有可能接触过纳米级陶瓷材料。该不该为此而担心呢?没有人知道……纳米材料是十分有价值的材料……然而,诸如研究人员、在工厂上班的工人甚至普通大众如果不小心接触某些纳米级物质,则有可能产生非常可怕的后果,远比让皮肤变蓝可怕得多。当然结果也有可能是良性的。只是我们不知道罢了。”

笔者认为,人类健康和环境问题是纳米伦理学中最关键的问题,纳米科技的安全由于其材料本身毒性风险的不确定性,给参与其中的人员埋下了一块定时炸弹。科学家应在国家安全前提下及时将纳米的毒性研究公之于众,并致力于纳米毒性的检测。在研究过程中采取必要安全措施,保证自身安全,从事相关工作的人员亦是如此,否则可能会对人员与环境造成无法挽救的伤害。

2 公正分配问题

从一个国家内部来说,以纳米技术为支撑的任何生物技术都需要大量的资金支持,用于医学时更是只有富贵的阶层才负担得起,结果只有社会的小部分人能够从纳米技术中获益。没有公正的分配制度,巨大的经济效益将会变成巨大的社会问题。而最重要的问题是风险与利益分配的不公正,即少数人享受了纳米技术带来的巨大利益,而大多数人却要为之付出健康与环境的代价。这样最终也影响到纳米技术的健康、可持续发展。从国与国之间来看,国内的加剧不公也会同理沿用到各国之间,在有些发展中国家还在解决粮食问题,医疗问题,维护国内和平的时候,发达国家却有时间和精力去研发纳米技术,这将加剧各国之间的不平等。南京大学哲学系的沈骊天教授谈到,纳米技术在被认为拥有缓解人们争夺能源大战,大幅度削减物质能量消耗的正面能量时,纳米时代也被人们设想为了纳米武器的战争年代。而纳米在军事上的强大应用的可能性,会掀起新一轮的军备竞赛,结果还可能使新的霸权主义诞生。

纳米技术用于治疗疾病之外,还被考虑用在健康的人身上使人变得更满意自己或更被别人满意。现在在人们思考范围内的纳米技术用于人类增强引发的生命伦理思考大概有用于延长寿命、基因优先和人类复制。长生不老的灵丹妙药是古代道士帝王的不舍追求,如果纳米技术让他那变成了现实,也许并不是什么好事。当延长寿命普及到社会的时候,生命的质量和生命的价值都将受到影响,更不利于社会的发展。谁有生命无限的权利?少数人或每个人?科学家

基因工程刚刚被提出能帮助治愈如亨廷顿舞蹈这类家族遗传“绝症”时,本应获得来自社会受其迫害和善良的人们的欢呼,但当人们同时想到基因工程也能用来做点其他的改变,使人更完美或更如父母社会所期待的那样时,伦理学家们指出了其中的问题。神学论证认为人类不能代替上帝。但也有神学家认为上帝与人都有义务利用基因工程改善人类生物学。世俗论证主要反对改变人类胚胎基因和设计婴儿,强调生物复制性和不可预测性。生物学家纽曼引用动物克隆的教训,指出克隆和生殖细胞基因工程往往出现差错,破坏胚胎的正常发育,给人类胚胎带来不可接受的风险。但也有 在笔者看来,我们也许轻易地发现将纳米技术用于基因优生给人类带来的影响。首先,人们可以根据自己的意愿选择拥有一个儿子还是女儿。在传统的中国,我们将面临更严峻的男女比例严重不平衡状态,因为即使在文明程度达到如此境地的今天,重男轻女的思想依然存在。其次,贫富差距和社会不公愈演愈烈。有机会并有能力选择的父母将为自己的孩子选择尽可能好的未来吗,更好的外表、更强的记忆,更高的智商,将人生的比赛起点提前了很多,这些“优生” 的孩子将在未来处于更有利的地位,并“恶性循环”。

纳米技术引发的伦理问题归纳起来最引人担忧的还是安全问题,虽然纳米技术完全发挥科学家预想的功能还需要无法估量的时间,但是未雨绸缪,总可以避免毁灭性的灾难,以免“弗莱肯斯坦”的故事变成现实。一步步探索,一步步求证,纳米伦理与纳米技术同步发展,将为纳米技术保驾护航。尽管我国政府也重视发展纳米技术,也强调发展纳米伦理,但是我国纳米技术的伦理研究远远滞后于纳米技术的发展。首先,目前我国伦理问题的提出没有得到解决的办法,也没有国际的认可。其次,我国公众参与纳米伦理的意识薄弱。再者,文理分界明显阻碍发展。美国曾预言,纳米技术将带来与工业革命一样的影响,在可持续发展发面,工业革命留给世界很多的遗憾,人们希望这一次可以在还没有给环境给人类带来不能挽救的伤害时就采取对策引导其发展,我国纳米伦理的研究可以说才刚刚起步,完善纳米伦理研究方式为人类造福是所有纳米伦理研究人员的目标。

参考文献:

[1] 樊春良。积极应对纳米技术社会和伦理问题[N].中国社会科学报,2010-9-21.

[2] 胡比希。王国豫(译).不能将发展纳米技术的决策权交给市场[N].中国社会科学报,2010-9-21.

[3] (美)J.C.米勒,R..塞拉托,G.孔达尔,J.M.雷普雷萨斯-卡德纳斯。周正凯,邱琳(译).纳米技术手册-商业、政策和知识产权法[M].北京:科学出版社,2009:32-33,35-37.

[4] 王国豫,龚超,张灿。纳米伦理:研究现状、问题与挑战[J].中国科学,2011,(02).

[5] 费多益。灰色忧伤―纳米技术的社会风险[J].哲学动态,2004,(1).

[6] 贾光。关注纳米材料职业人群的健康维护[N].中国社会科学报,2010-9-21.

[7] 郭良宏,江桂斌。纳米材料的环境应用与毒性效应[N].中国社会科学报,2010-9-21.

[8] 王国豫。纳米技术的伦理挑战[N].中国社会科学报,2010-9-21.

[9] 沈骊天。纳米技术革命的未来展望与现实关注[J].科学技术与辩证法,2003,(01).

[10] 肖爱丽。纳米技术与人类道德[J].山西高等学校社会科学学报,2007,(04).

纳米技术论文 9

论文摘要:介绍了纳米磁性材料的用途,阐述了纳米颗粒型、纳米微晶型和磁微电子结构材料三大类纳米磁性材料的研究和应用现状。

1引言

磁性材料一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了许多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。

纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。

2纳米磁性材料的研究概况

纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。

2.1纳米颗粒型

磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提高。纳米磁性微粒由于尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。

纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提高密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。

磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体的防尘密封。磁性液体还有其他许多用途,如仪器仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造影剂等等。

纳米磁性药物:磁性治疗技术在国内外的研究领域在拓宽,如治疗癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有效地杀死癌细胞。另外,还可以用磁粉包裹药物,用磁体固定在病灶附近,这样能加强药物治疗作用。

电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。

2.2纳米微晶型

纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性能也在不断提高,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理论值64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀土永磁材料,如钐铁氮、钕铁氮等化合物。另一方面,开发研制复合稀土永磁材料,将软磁相与永磁相在纳米尺寸内进行复合,就可获得高饱和磁化强度和高矫顽力的新型永磁材料。

纳米微晶稀土软磁材料:在1988年,首先发现在铁基非晶的基体中加入少量的铜和稀土,经适当温度晶化退火后,获得一种性能优异的具有超细晶粒(直径约10nm)软磁合金,后被称为纳米晶软磁合金。纳米晶磁性材料可开发成各种各样的磁性器,应用于电力电子技术领域,用作电流互感器、开关电源变压器、滤波器、漏电保护器、互感器及传感器等,可取得令人满意的经济效益。

2.3磁微电子结构材料

巨磁电阻材料:将纳米晶的金属软磁颗粒弥散镶嵌在高电阻非磁性材料中,构成两相组织的纳米颗粒薄膜,这种薄膜最大特点是电阻率高,称为巨磁电阻效应材料,在100MHz以上的超高频段显示出优良的软磁特性。由于巨磁电阻效应大,可便器件小型化、廉价,可作成各种传感器件,例如,测量位移、角度,数控机床、汽车测速,旋转编码器,微弱磁场探测器(SQUIDS)等

磁性薄膜变压器:个人电脑和手机的小型化,必须采用高频开关电源,并且工作频率越来越高,逐步提高到1~2MHz或更高。要想使高频开关电源进一步向轻薄小方向发展,立体的三维结构铁芯已经不能满足要求,只有向低维的平面结构发展,才能使高度更薄、长度更短、体积更小。对于10~25W小功率开关电源,将采用印刷铁芯和磁性薄膜铁芯。几个微米厚的磁性薄膜,基本上不成形三维立体结构,而是二维平面结构,其物理特性也与原来的立体结构不同,可以获得前所未有的高性能和综合性能。

磁光存储器:当前只读和一次刻录式的光盘已经广泛应用,但是可重复写、擦的光盘还没有产业化生产。最具有发展前途的是磁性材料介质的磁光存储器,其可以像磁盘一样反复多次地重复记录。目前大量使用的软磁盘,由于材料介质和记录磁头的局限性,其存储密度已经达到极限;另外其已经不能满足信息技术的发展要求,无法在一张盘上存储更多的图象和数据。采用磁光盘存储,就能在一张盘上记录数千兆字节到数十千兆字节的容量,并且能反复地擦写使用。

3展望

纳米技术是本世纪前20年的主导技术,纳米材料是纳米技术的核心,是21世纪最有前途的材料,也是纳米技术的应用基础之一。纳米科技的发展给传统磁性产业带来了跨越式发展的重大机遇和挑战,纳米级磁性材料的开发和研究是磁性材料发展的一个必然方向,但同时也应重视用纳米技术改造传统产业和对现有材料进行纳米改性方面的研究,以全面提高企业的技术水平和竞争能力,在世界民族之林树立中华民族的大旗。

参考文献

[1]?@王瑞金。磁流体技术的应用与发展[J].新技术新工艺,2001,(10):15-18.

[2]?@许改霞,王平,李蓉等。纳米传感技术及其在生物医学中的应用[J].国外医学生物工程分册,2002,25(2):49-54.

[3]?@SagawaM,FujimureSandTogawaMetal.,NewmaterialforpermanentmagnetsonabaseofNdandFe[J].J.Appl.Phys.,1984,55:2083-2088.

纳米技术论文范文 10

关键词:纳米技术及其相关产业;概念界定;体系辨识。

当前,“发展纳米技术及其相关产业”这一口号,已被提升到实现中国梦苏州篇章、苏州实施创新引领战略进而华丽转身的重大战略高度,那么什么是纳米技术及其相关产业,搞清楚这一问题,则无论对于苏州的决策者、研究者还是实践者来讲,都具有重要的建设性意义。

去年,我们在执行一项有关促进苏州市纳米技术及其相关产业发展的重大软科学课题时,首当其冲地遭遇到这一问题。通过文献检索与分析,我们发现,由于纳米技术及其相关产业纷繁复杂,纳米科学技术界尚未对该一问题形成共识;同时,社会科学理论界卷入纳米领域研究较少,可资借鉴的成果太少。然而,这一问题的解决将直接影响到我们研究项目的进一步履行,为此,我们设立了一个研究子课题,本文即是该子课题研究成果,在此抛砖引玉,期望不仅对苏州市,也对国内其他正在促进纳米技术及其相关产业发展的地区起到启迪作用。

一、什么是纳米技术及其相关产业

要搞清楚纳米技术及其相关产业首先要理解纳米与纳米尺度范围,以及纳米尺度范围内物质的质变特性及其意义,本节我们将据此入手,进而界定纳米技术及其相关产业的概念。

1.纳米与纳米尺度范围

纳米(Nanometer,缩写nm)是计量学中的长度单位。1纳米(nm)等于10-3微米(mm),等于 10-6毫米(mm),等于 10-9米。1—100纳米(nm)被纳米学界公认确定为纳米尺度。 通过不同物体相对尺度大小比较(见图1)及纳米尺度范围内常见球形物体大小比较(见图2),可以加深对于纳米及纳米尺度范围概念的理解。

2.纳米尺度范围内物质的质变特性及其意义

科学家发现,当物质小到1 ~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。

3. 国外科学家如何理解与解释纳米技术

看一看国外科学家如何理解与解释纳米技术或许对我们会有很大帮助,以下是国外科学家对于什么是纳米技术的典型解释(转引自彭练矛,2011):

“The term nanotechnology means different things to different people. It used to cover anything from making microelectromechanical systems (MEMS) to creating designer proteins.”

“Whatever we call it, it should let us

—— Get essentially every atom in the right place.

—— Make almost any structure consistent with the laws of physics and chemistry that we can specify in atomic details.

—— Have manufacturing costs not greatly exceeding the cost of the required raw materials and energy.”

这两段英文的中文翻译如下:纳米技术术语意味着对于不同对象人群的不同事情。它通常涵盖从制造微电子机械系统到创造人造蛋白质的所有事情。然而,不管我们如何称呼,纳米技术的实质应该包括:每一个原子应被安排在合适的位置,任何相应建构应符合原子水平上的物理和化学原理,原材料和能源等相应制造成本应不是太贵。

从以上国外科学家对于什么是纳米技术的典型解释中我们可以发现,纳米技术(nanotechnology)在国外是一个约定俗成的术语,是对纳米领域新生事物科学研究、技术研发和工程应用的统称,纳米技术尚是一个发展中的概念,目前还没有被严格界定。

4. 纳米技术概念

经过上面的铺垫,现在我们可以来探讨界定纳米技术概念。对于什么是纳米技术,麻省理工学院(MIT)的德累克斯勒(Drexler)教授曾作出过一个解释:

“在分子水平上,通过操纵原子来控制物质结构,利用单个原子组建分子系统,据此制备不同类型的纳米器件”(Drexler,1990)。

而在中文语境中,谈到技术往往还牵连到科学与工程,对此,白春礼院士也有一个解释:

“纳米科技是20世纪80年代末、90年代初才发展起来的前沿、交叉性新兴学科领域,是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术”(白春礼,2001)。

白院士所指的纳米科技既包括纳米科学又涵盖纳米技术。实际上,中文语境中的纳米科技常常是纳米科学研究、技术研发和工程应用的统称。指在纳米尺度上研究物质和体系的现象、规律及其相互作用,重新认识自然界,发现新现象和新知识,并通过直接操控原子、分子结构的技术来创造对人类有用的新的物质和产品。

综上所述,可见所谓纳米技术是指涉及到纳米科学研究、材料发展和制备、器件制造以及产品开发生产之所有技术的总和。

5. 纳米技术相关产业概念

知道了什么是纳米技术以后就较易分辨纳米技术相关产业。过去的二、三十年,纳米科学技术的进步,尤其是纳米技术的应用已经和正在对人类社会的经济发展、社会进步和国防安全产生重大影响。然而,这仅仅是开始,纳米科学研究、技术发展和工程应用已经和正在引发一场新的工业革命,证据表明,纳米技术在材料、信息、能源、环境、生命、生物、军事、制造、纺织、染料、涂料、食品等产业领域都具有广泛而重要的应用。而一旦这些产业领域中纳米技术应用产品批量化、商品化和规模化,则自然形成一个个纳米技术相关产业。

二、纳米技术体系范畴

界定了纳米技术及其相关产业概念后,本节与下节我们可以转而讨论纳米技术体系范畴以及纳米技术相关产业体系范畴。

技术来源于科学,是理论知识应用于实践、解决实际问题的方法和手段,因此谈到纳米技术不能不涉及到纳米科学。尽管目前学术界对于纳米科学的内涵和分类尚存在着不同的认识和提法,但对于这一新兴领域多学科交叉特性的认识是一致的。一般而言,纳米科学可以包括纳米材料物理学、纳米材料化学、纳米材料学、纳米测量学、纳米电子学、纳米机械学和纳米生物医学等,由此也产生了按照这一体系分类的纳米技术。

然而,白春礼院士(2001)认为这种与传统学科紧密联系的分类方式无法简单便捷地勾勒出纳米科技的大致轮廓,而且各类别之间又有交叉和重叠。因此,他建议将纳米科学研究分为“纳米材料”、“纳米器件”和“纳米检测和表征”三大领域, “其中纳米材料是纳米科技的基础; 纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志; 纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础”(白春礼,2003)。据此,纳米技术体系又可主要由上述三大范畴来表达。

我 若与纳米技术相关产业相联系,则我们更倾向于并将更多地采纳和应用后一个分类。

无独有偶,日本专利局《专利申请技术动向调查报告》中提供了一个与应用实际联系密切的纳米技术分类(见图3,该图由DRM咨询公司补充修改而完成),该分类基本遵循上述三个大类分类范畴,并采用图式标识了各主要应用领域中的发展状况,恰好为三大类纳米技术分类体系作了一个生动的注解,虽然尚未达到完整完善的程度,但已有很大的参考价值。

沿着三大类纳米技术分类思路继续往下走,可以得到图4所示纳米技术分类体系。其中一级状态子目录包括“纳米检测和表征技术”、“纳米材料制备技术”和“纳米器件制造技术”。而每个一级目录又可进一步产生二级目录,如纳米检测和表征技术可分为“扫描探针显微技术”和“原子级和超精密加工技术”;纳米材料制备技术可分为“化学制备技术”、“物理制备技术”和“综合制备技术”;纳米器件制造技术可分为“LIGA制造技术”、“超精密机械加工技术”、“特种加工技术”、“注塑成形加工技术”和“机械组装技术”等。需要说明的是,这一分类只是大体上勾勒了纳米技术发展现状,提供了一个整体认识把握的粗略框架。现实纳米世界中的实际情况则更为纷繁复杂,不仅存在着旁支末叶,也可以进一步细分和再细分。

三、纳米技术相关产业体系范畴

应用上述“纳米材料”、“纳米器件”和“纳米检测和表征”三大范畴的纳米技术分类思想,可以推导出纳米技术相关产业体系范畴,如图5所示:

如图5所示,首先,纳米技术相关产业可以被界定为纳米材料产业、纳米器件产业和纳米检测仪器设备产业,其中纳米材料是纳米技术相关产业得以生存发展的原始基础,没有纳米材料则一切无从谈起;纳米器件系纳米材料进一步加工组合后的产物,是延伸发展各种纳米技术应用产品的基础;而纳米检测仪器和设备则是发展纳米材料、器件及其延伸产品的必不可少的硬件手段,缺乏这些手段,事情就无法进行。

上述三者一方面构成了纳米技术相关产业生存发展的基础,另一方面,正是基于这种基础性和不可替代性,它们各自能够发展成三个供需旺盛的分支产业,并在每个分支产业下面各自生成若干数量不等的子产业。

此外,鉴于纳米材料和纳米器件能够被应用到各个新兴和传统产业领域,创造出各种各样新颖独特、质量上乘、性能优异的新产品,因此,在上述三个分支产业以外,又可辨识出纳米材料应用和纳米器件应用两个分支产业。当然,这两个分支产业下面更能各自生成若干数量不等的子产业。

若从事情发生的先后次序来看, 纳米科学技术研究发展的需要首先造就了纳米检测仪器设备产业和纳米材料产业。结合纳米检测手段和纳米材料的研究创造了纳米器件, 纳米器件(如纳米传感器)的推广应用催生了纳米器件产业。接着,纳米材料和器件在各个领域的广泛应用开发出许多新颖产品和更新换代产品,从而发展出形形的纳米产品产业,并进一步促进纳米材料、器件和检测仪器设备产业的发展。这就是纳米技术相关产业相伴共生、互促共长的内在逻辑。

在现实生活中, 纳米材料产业和纳米检测仪器设备产业已经形成一定规模,发展相对成熟。处于纳米技术高端的纳米器件产业(电子/光电子器件、量子器件、以及微/纳机电系统)目前尚处在发展成长过程中,这是纳米大国共同关注、竞相角逐的领域,也是进一步发展的方向,其中属于MEMS/NEMS范畴的微纳传感器分支产业已经初具规模。同时,纳米材料和器件的应用已经渗透进入许多不同的经济和社会领域,例如,电子和信息、生物与医药、环境保护等,从而增殖衍生出发展状况各异、纷繁复杂的纳米技术产品和产业。

当然,换一个角度,如果忽略纳米技术居中扮演的角色,这一复杂逻辑体系中各个分支仍可分属于自己的母体产业,例如,纳米材料产业可归属于材料产业,纳米检测仪器设备产业可归属于仪器设备产业等等,由此也揭示了纳米技术相关产业所具有的双重产业属性。

四、结 语

以上我们通过运用相关文献资料, 进行抽丝剥茧式的逻辑分析,界定了纳米技术及其相关产业的概念, 进而揭示了纳米技术及其纳米技术相关产业的体系范畴,

当前,纳米技术与信息技术和生物技术一起� 期待我们这一抛砖引玉的工作能为苏州/中国抢占这一制高点作出些微贡献。

参考文献

赵康等。《苏州市纳米技术及其相关产业发展战略研究总论》, 古吴轩出版社,2012。

杨辉。《纳米科学技术概论》(未发表PPT课件),2010。

白春礼。纳米科技及其发展前景。《科学通报》,2001/2。

白春礼。全面理解纳米科技内涵,促进纳米科技在我国的健康发展。《微纳电子技术》,2003/1。

彭练矛。《纳米科技和纳米电子学》(未发表PPT课件),2011。

基金项目:苏州市2012年度重大软科学课题,项目编号:SR201201。

作者简介:赵康(1950 –),男,江苏苏州人,博士,教授,博导,主要研究� 顾茜茜与陈加丰均为赵的博士研究生,赵迪凡为项目研究助理。

What Is Nanotechnology and Its Related Industries

——Concept Defination and System Identification

ZHAO Kang GU Xixi CHEN Jiafeng ZHAO Difan

(School of Politics and Public Adminstration, Soochow University, Suzhou 215021, China)

纳米技术论文 11

【论文摘要】:讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

1. 纳米结构的制备

有两种制备纳米结构的基本方法:build-up和 build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down 方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(mbe)、化学气相淀积(movcd)等来进行器件制造的传统方法。“build-down”方法的缺点是较高的成本。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up” 方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

2. 纳米结构尺寸、成份、位序以及密度的控制

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于gan材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

⑴ 电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。

⑵ 聚焦离子束光刻是一种机制上类似于电子束光刻的技术。

⑶ 扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。

⑷ 多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。

⑸ 倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。

⑹ 与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。

⑺ 将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法, 比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。

3. 纳米制造所面对的困难和挑战

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80 nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用x光和euv 的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。

对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100 nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术

4. 展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找mos晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

参考文献

[1] 王淼, 李振华, 鲁阳, 齐仲甫, 李文铸。 纳米材料应用技术的新进展[j]. 材料科学与工程,2000.

[2] 吴晶。 电喷雾法一步制备含键合相纳米微球的研究[d]. 天津大学, 2006.

[3] 张喜梅, 陈玲, 李琳, 郭祀远。 纳米材料制备研究现状及其发展方向[j]. 现代化工,2000.

[4] 朱雪琴。 纳米技术的研究及其应用[j]. 新技术新工艺, 1996.

纳米技术论文 12

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以发表和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技发表协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行发表与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

为了促进纳米技术研发成果的转化,2000年12月,中国成立了第一个国家纳米技术产业化基地。该基地集中了国内一流的纳米技术研究机构和专家,并正在筹建世界级的国家纳米技术研究院。基地的发展目标是成为世界级的纳米技术科学城,孵化出一批世界级的高新技术企业,培养出一批世界级的纳米技术专家和现代企业家,把基地� 市场化的、开放的、流动的现代化“纳米产业集群”。2003年8月,中国科学院纳米技术产业化基地宣告成立。该基地由中国科学院和多家纳米技术企业组成,将以产业化开发为主,兼顾应用研究、促进基础研究。

纳米技术论文 13

关键词:微米技术;纳米技术;微细加工技术;纳米电子技术;纳米机械技术

科学技术向微小领域发展,由毫米级、微米级继而涉足纳米级,人们把这个领域的技术称之为微米/纳米技术(Micro& Nano-Technlogy)。

当前,微米/纳米技术在国际上已使人类在改造自然方面进人一个新的层次,即以微米层次深人到原子、分子级的纳米层次,它作为21世纪出现的高技术,发展十分迅猛,并由此开创了纳米电子、纳米材料、纳米生物、纳米机械、纳米制造、纳米测量等新的高技术群。

一、微米技术

1.微小尺度的设计理论研究

微型系统的设计并非简单的机械微小化,而需要从物理及物质相互作用等方面进行重新研究,形成一整套的设计理论与方法。其研究重点应包括微动力学、微流体力学、微热力学、微机械学、微光浒学等,并且注重现代设计方法如CA0技术、仿真与虚拟现实技术等在微型系统设计中的应用,通过上述研究,解决微型系统设计中的尺寸效应`表面效应、误差效应及材料性能等的影响。

2.微细加工技术

微细加工技术包含超精机械加工、IC工艺、化学腐蚀、能量束加工等诸多方法。对于简单的面、线轮廓的加工,可以采用单点金刚石和CBN(立方氮化硼)刀具切削、磨削、抛光等技术来实现,如激光陀螺的平面反射镜和平面度误差要求小于30nm,表面粗糙度Ra值小于1hm等。而对于稍微复杂一点的结构,用机械加工的方法是不可能的,特别是制造复合结构,当今较为成熟的技术仍是IC工艺硅加工技术,如美国研制出直径仅为60~120um的硅微型静电电动机等。

3.精密测试技术

具有微米及亚微米测量精度的几何量与表面形貌测量技术亦已成熟,如具有0.01um精度的HP5528双频激光干涉测量系统,具有0.01 um 精度的光学与触针式轮廓扫描系统等。因此,目前精密测试技术的一个重要研究对象是微结构的力学性能,

4.微系统技术

在研究微系统设计、加工、测量的基础上,国内外较广泛地开展了微型传感、微执行机构、微电子信号处理等方面的研究工作,如已制作出微型力传感器、微型泵、微电机等。

二、纳米技术

纳米技术通常指纳米级0.1~100nm的材料、测量、控制和产品的技术。

纳米技术是科技发展的一个新兴领域,它不仅仅是将加工和测量精度从微米级提高到纳米级的问题,而是人类对自然的认识和改造方面,从宏观领域进人到物理的微观领域,深人了一 个新的层次,即从微米层深人到分子、原子级的纳米层次。

1.纳米电子技术

在过去的们年里,晶体管的特征尺寸由10mm减小到小于1 um ,现在可实现在一个集成片上包含100万个单元,对于这种尺度的电子线路,宏观规律仍旧有效,然而未来一二十年的科技发展使尺寸进一步缩小10~100倍进人到纳米尺度,量子力学及电子的波动性就不能不再考虑了。

⒉纳米机械技术

纳米机械技术包括的领域很广,其研究基础包括纳米加工过程的动力学模拟、纳米构件与表面分子工程、纳米摩擦学等,这里所指的纳米机械是能实现纳米尺寸上某种功能的机械,如纳米制造设备及纳米执行器,纳米执行器能实现纳米尺度的移动与定位。

3.纳米材料技术

纳米材料技术是发展最早且研究最深人的学科。纳米材料由于其结构的特殊性,如大的表面比、小尺寸效应、界面效应、量子效应和量子隧道效应等一系列新的效应,使纳米材料出现许多不同于传统材料的独特性能,从而使其在未来新材料上充当角色,如隐身材料,高灵敏度、高响应的传感材料,多功能复相陶瓷材料等。

4.纳米加工技术

纳米加工技术的发展面临两大途径:一方面是将传统的超精加工技术,如机械加工(单点金刚石和CBN刀具切削、磨削、抛光)(电化学加工(ECM)、电火花加工(EDM)、离子和等离子体蚀刻、分子束外延(MBE)、物理和化学气相沉积、激光束加工(LIGA)技术等向其极限精度逼近,使其具有纳米的加工能力。另一方面,开拓新效应的加工方法,如STM对表面的纳米加工,可操纵原子和分子,并对表面进行刻蚀。如美国的IBM公司利用STM将35个原子排出“IBM”三个字样,且在硅片上覆盖一层20nm厚的聚甲基丙烯甲酯(PMMA),再利用STM光刻,得到10nm宽的线条等。

5.纳米测量技术

以上所涉及有关纳米技术的研究,均离不开对它们的分析测试工作-纳米测量技术,或称之为纳分析和纳探针技术。其中,纳探针技术发展迅速并较为成熟,随着20世纪80年代STM的出现,使人们能直接观察到物质表面的原子结构,把人们带到了微观世界。

参考文献

[1]王明耀,张兆隆。机械制造技术(K).中高等教育出版社,2002(297-298)

[2]安美玲。机械基础(K).电子工业出版社,2007(211-218)

[3]魏康民。机械制造技术(K).机械工业出版社,2006,2(69-280)

作者简介

一键复制全文保存为WORD
相关文章