在日复一日的学习、工作生活中,大家都不可避免地要接触到论文吧,论文是一种综合性的文体,通过论文可直接看出一个人的综合能力和专业基础。你写论文时总是无从下笔?
关键词:泵送混凝土温度裂缝原因分析控制措施
1.前言
随着建筑技术的不断发展,泵送混凝土施工技术得到普及和应用。泵送混凝土不仅能改善混凝土的施工性能,对薄壁密筋结构少振捣或不振捣施工,具有提高抗渗性、改善耐久性特点。同时,泵送混凝土骨料级配的限制,胶凝材料的大量使用,产生大量的水化热,造成温度裂缝普遍存在,在一定程度上影响结构的抗渗性和耐久性,应当引起足够的重视。为此,现就温度裂缝产生机理及如何有效控制裂缝的出现和发展,谈几点粗浅的认识。
2.温度裂缝产生机理及特征
混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,使得混凝土结构内外出现较大的温差,这些温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。
温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。
3.影响因素和防治措施
混凝土内部的温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。
对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。
3.1混凝土原材料及配合比的选用
(1)尽量选用低热或中热水泥,减少水泥用量。大体积钢筋混凝土引起裂缝的主要原因是水泥水化热的大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面的温差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。
(2)掺加掺合料大量试验研究和工程实践表明,混凝土中掺入一定数量优质的粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到作用,可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。特别重要的效果是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下的温度升高。在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。
3.2施工工艺流程改进
(1)改善搅拌工艺采用二次投料的净浆裹石或砂浆裹石工艺,可以有效地防止水分聚集在水泥砂浆和石子的界面上,使硬化后界面过渡层结构致密、粘结力增大,从而提高混凝土强度10%或节约水泥5%,并进一步减少水化热和裂缝。改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。
(2)严格控制浇筑流程合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。在高温季节泵送,宜用温草袋覆盖管道进行降温,以降低入模温度。
(3)注重浇筑完毕后养护混凝土养护主要是保持适当的温度和湿度条件。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。
4.温度裂缝的处理方法
混凝土裂缝的修补措施主要有采取以下一些方法:如表面修补法,嵌缝法,结构加固法,混凝土置换法等。
4.1表面修补法
表面修补法主要适用于稳定和结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。
4.2嵌缝法
嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性防水材料为聚合物水泥砂浆。
4.3结构加固法
当裂缝影响到混凝土结构的性能时,就要考虑采用加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。
4.4混凝土置换法
混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。
丰乐水库位于安徽省黄山市岩寺区境内丰乐河上,距黄山东南约50km,是一以防洪、灌溉为主结合发电的综合利用工程,水库尾水流入新安江水库。水库总库容8400万m3,坝址以上控制流域面积297km2,为中型三等工程。水库校核洪水位(500年一遇)为210.6m,设计洪水位为208.8m,正常蓄水位为201.0m,死水位为183.0m。
丰乐水库大坝为变圆心变半径的等厚拱混凝土双曲拱坝,坝顶高程211.0m,坝底最低高程157.0m,最大坝高54.0m;坝顶厚2.5m,坝底厚12.5m,厚高比0.23;坝顶弧长216.15m,坝顶弦长168.2m,弧高比4.0,弦高比3.1。大坝沿拱坝轴线分为16个坝块,各坝块宽约12m。拱坝的结构尺寸见表1。
坝顶设有开敞式自由挑流溢洪道,溢流坝段弧长56.1m,堰顶高程204.0m,最大泄量2060m3/s。
大坝于1973年1月开始混凝土浇筑,1976年6月完成大坝混凝土施工,1978年3月大坝横缝重复灌浆结束,至此,拱坝已形成整体结构,具备蓄水运用条件。但因库内公路改线工程未能按期完成,为维持屯溪市至黄山的公路交通,坝内放水底孔一直敞开,水库迟迟不能蓄水。1978年夏季,该地区出现百年不遇的长期高温干旱气候,水库同时处于空库状态,致使坝体长期处于空库+自重+温升荷载组合下运行。1978年冬季在左、右岸下游坝面分别出现9条和3条裂缝,后于1986年进行了裂缝灌浆处理。
大坝裂缝分布见图1。图中裂缝编号1~20系1979~1986年间年出现的,其中有12条裂缝即为1978年冬季在下游坝面产生的(左岸9条、右岸3条);图中未编号的裂缝是1986~2001年间发展的裂缝。
2坝身裂缝及其发展
2.11986年灌浆前下游坝面裂缝状况
由于1978年夏季高温干旱,大坝处于空库状态,而拱坝较薄,拱圈曲率又较大,温度荷载引起拱坝向上游变位,在下游坝面拱座附近产生较大拉应力。1978年5月7日到8月26日,在大坝左岸下游2号坝块195m高程至6号坝块165m高程发现裂缝,裂缝基本上平行于岸坡方向,总长度达80m左右,缝宽达1.0mm;右岸12号坝块175m高程至14号坝块176.3m高程裂缝沿175m高程水平建筑缝延伸29.35m长。1979年初用环氧树脂封堵裂缝,当年10月发现裂缝继续张开并向两端延伸。1979年12月,南京水利科学研究所用超声波对大坝左岸下游拱座附近184m高程裂缝进行探测,裂缝深度大于2.3m,该处坝厚6.9m。
由于大坝裂缝未能及时修补,1979年水库蓄水后至1986年9月,大坝裂缝已发展到20条,总长度达260.8m,在裂缝和横缝相交处,坝面潮湿、渗水,高水位时局部裂缝有喷射水雾现象。1986年冬季用改性环氧树脂进行灌浆,共灌了19条裂缝,共计灌入改性环氧树脂浆液331.2L,灌后缝面不再渗漏,通过超声波检测,大多数裂缝的波幅都有很大程度的提高,有的已接近无缝混凝土的波幅。
2.2坝身裂缝的发展
裂缝灌浆后,大坝运行一直比较正常。从1986年至1994年的观测资料看,左岸坝后裂缝宽度有增大的趋势,但没有发现新的裂缝,已灌浆的裂缝也没有被拉开。
1996年以后,下游坝面陆续发现新的裂缝,下游坝面漏水点增多,至2001年底共发现有40多处漏水点,并拌有白色的氢氧化钙析出,部分裂缝和横缝交叉处漏水,且渗水缝段较长,出现新的裂缝。2001年12月14日检查发现,6号、8号、10号、11号坝块出现水平裂缝或斜裂缝共6条,总长度28.1m。
2.3坝身裂缝的性状
通过1979年和1986年分别由南京水科所和蚌埠水科所用超声波对裂缝进行检测,裂缝最大深度分别为2.3m和2.14m,缝宽不大于1.0mm,2002年初由淮河流域水工程质量检测中心对新、老裂缝进行检测,裂缝宽度为0.05~0.45mm。
从几次裂缝检测结果看,丰乐拱坝下游面裂缝均为表面裂缝。
3裂缝原因分析
3.11978年大坝裂缝分析
3.1.1拱坝体型对大坝变形的影响
丰乐拱坝是等厚圆弧拱,拱坝中心角较大,以196m高程拱圈为例,该层拱圈厚6.1m,拱圈中心半径86.75m,中心角126°。如按目前的扁平拱坝布置,相同坝高处中心角约80°,拱圈中心半径120.25m。可见,在拱圈厚度相同、跨度相同时,丰乐拱坝拱圈弧长比一般扁平拱坝多22.87m,在拱圈受到相同温升荷载的作用时,丰乐拱坝拱圈向上游膨胀比一般扁平拱坝要大的多,而丰乐拱坝有六分之五的坝高段的中心角都大于120°,拱圈膨胀使下游坝面拱座附近产生的拉应力相当大。同时,丰乐拱坝是圆弧拱且中心角较大,造成左、右岸坡梁向上游倒悬度达到1∶0.33,在拱坝自重荷载作用下,左、右岸坡下游将产生0.7~0.8MPa的拉应力,并使拱坝产生向上游的变位。
3.1.2下游坝面温度变化对拱坝应力的影响
丰乐河水在坝址附近由北向南流,拱坝中心线走向为NE18°25′,下游坝面朝南,在夏季高温期间,阳光直射下游坝面。在空库期间,上游坝面一直处在阳光照射不到的坝阴下,由于山区昼夜温差较大,因此上游坝面温度比下游坝面低得多;而两岸坡梁又向上游倒悬,下游坝面接收阳光的热量更多,上、下游坝面温差更大。下游坝面温度高于上游坝面,使岸坡梁向上游变形,在自重和温升荷载作用下,用多拱梁法计算下游坝面的最大拉应力为3.56MPa,该计算结果还未考虑拱坝朝向和实际日照温差的影响。
综上所述,丰乐拱坝受体型及方位的制约,在空库温升条件下运行必然会产生裂缝。实际运行情况是,1978年8月26日在左、右岸坡发现的裂缝,即由上述原因所造成。因受上部拱圈的约束作用,岸坡梁向上游的变形受到限制,所以受拉裂缝没有向坝的深部延伸。
3.2后期裂缝发展成因
丰乐拱坝由15条横缝将大坝分成16个坝块,每个坝块的下游面宽度都小于12m。横缝虽然经过接缝灌浆,但其承受拉应力的能力仍然低于坝身混凝土。从1986年以后坝下游面出现的36条竖向裂缝看,6号坝块和4号坝块中部都各有一条长12m和8m的长缝,其余34条竖缝长1~5m,缝宽0.05~0.45mm,缝深均小于2.0m,以上裂缝大多发生在河床至左岸坝块。从裂缝分布和横缝位置看,因较大的拱圈拉应力可以通过横缝释放,故两横缝之间的坝体混凝土不致被拉裂。
丰乐拱坝下游面朝南,拱冠附近坝体向下游倒悬,两岸是拱座山脊,盛夏高温期,下午2时至3时,坝下游好似大烤箱,行人不能停留,下游坝面温度可达55~60℃。坝体内1.0m深处的混凝土温度达34.6℃,坝面附近的混凝土温度可能达到40℃以上,而夜晚山谷的温度可很快降低到30℃以下,坝面下的混凝土温度则下降较慢,内、外温差可达20℃以上,由此产生的拉应力,可将坝面混凝土拉裂。由于拱坝中心线为NE18°25′,左岸下游坝面日照时间较长,右岸山脊较高,下午四点钟以后,右岸坝下即照不到阳光,因此左岸下游坝面温度应力较大,大坝实际运行也是在左岸坝下出现较多的竖向裂缝。
由上可知,下游坝面后期出现的裂缝多是由坝面的非线性温差引起的表面裂缝。
4日照对坝面温度的影响
《混凝土拱坝设计规范》(SD145-85)在关于边界温度的确定中规定:下游表面年平均温度等于年平均气温加日照影响,下游表面温度年变幅等于气温年变幅加日照影响(约1~2℃)。规范中对下游坝面温度的计算,不管下游坝面是朝南还是向北,日照影响都定为1~2℃,对下游坝面朝北的拱坝可能差别不大,但对于下游坝面朝南的拱坝,其日照影响决不是1~2℃。
丰乐拱坝处的年平均气温为16.4℃,按规范规定计算下游表面温度年变幅为18.4℃,按以上温度荷载,用多拱梁法程序计算,左岸坡梁的拉应力为3.56MPa;而实测的下游坝面内1.0m处混凝土的温度达34.6℃,靠近坝面处混凝土温度会更高,因而丰乐拱坝实际承受的温度荷载应比计算值要大得多,这也是丰乐拱坝前期产生裂缝的重要原因之一。
5预防坝面温度裂缝的措施
在拱坝设计中,可能会遇到下游坝面朝南的中小型薄拱坝,有类似丰乐拱坝这样的问题,如处理不好显然将会在下游坝面出现较多的温度裂缝。这些裂缝虽然不深,但对薄拱坝来说,裂缝切断拱圈的深度占拱厚的比例较大,必然会引起拱圈应力的再分配,也可能在缝端产生应力集中,对拱坝安全造成不利,因此防止坝面出现温度裂缝的问题不可轻视。
从丰乐拱坝实测温度资料及分析可以看出,夏季日照对坝面温度的影响不可忽视。较好的解决办法是在下游坝面贴上保温层,使每天日照高温来不及传到坝面混凝土就到了晚上的降温时间。中国水利水电科学院研究的发泡聚胺脂保温层是较好的保温材料,聚胺脂和混凝土坝面的黏结力为0.1MPa,5~6cm厚的发泡聚胺脂可相当于4.0m厚的混凝土的保温效果,足以阻止日晒高温传至下游坝面,从而使下游坝面温度能长期保持在夏季的平均温度。此外,保温层对冬季气温骤降也有很好的防护作用。
6结语
经以上对丰乐拱坝坝面裂缝的分析可知,其1978年发生的裂缝是1978年夏季高温+空库+自重荷载组合引起的,而后期发生的坝面裂缝中的少部分水平缝是由于拱坝应力重分配引起的,大量的裂缝是线性温差和表面非线性温差引起的浅层短小细缝。丰乐拱坝特有的体型及方位布置进一步促使了上述裂缝的产生,应引起足够的重视。
针对丰乐拱坝运行中出现的问题,可说明以下两点:
(1)等曲率、等厚、大中心角的拱坝设计有一定的局限性,过大的中心角虽然可以减小拱厚,但拱圈弧长的增大却降低了拱圈适应变形的能力。而变曲率、变厚的三圆心拱、椭圆拱、抛物线拱应是拱坝的发展趋势,它们可以更好地改善坝体应力,同时亦更有利于拱座的稳定。
混凝土一般都采用柱塞泵泵送,泵送时会产生比较大的冲击力,因此模板支撑系统必须经过严格的计算,要复核钢管强度、整体刚度、抗倾覆能力,并适当加密立杆间距,减小和控制模板下挠程度,以保证模板支撑系统有足够的刚度来承受混凝土的浇筑冲力。混凝土模板支撑系统要做到构造合理、重点加强,特别是扫地杆不能缺少。模板拼缝要满足施工及规范要求,做到不漏水、漏浆,为保证楼板厚度应严格控制模板和混凝土顶标高。
尤其要注意的是,楼面堆载不能过早。施工过程中,严格根据楼面混凝土实际强度确定下一层周转材料和柱钢筋的上楼面时间。现浇板上不要过早上人、堆料、增加施工荷载,因混凝土浇筑后要有一个硬化过程,才会有强度,在这个过程中,应对混凝土加以保养,不能对混凝土施加任何外力。必须在混凝土强度达到1.2N/mm2以后,才允许在其上踩踏或安装模板及支架。控制方法很简单,就是要求塔吊司机在接到项目部通知后方允许吊运材料,并且注意严禁集中堆载,才可避免因人为因素造成破坏性裂缝。
2塑性收缩裂缝
塑性收缩裂缝出现在暴露于空气中的混凝土表面,裂缝较浅,长短不一,短的仅20cm-30cm,长的可达2m-3m,宽Imm-5mm,裂缝互不连贯,类似干燥的泥浆面。
防止收缩裂缝的措施
2.1选用水泥时,宜选用铝酸三钙谷量较低,细度不宜过细,矿渣含量不宜过多的水泥,砂不宜用特细砂。在确定配合比时,应采用低水灰比,低水泥用量和低用水量,选用级配良好的砂子和石子。气温较低时,在混凝土中掺加促凝刑,以加速混凝土的凝结和强度发展。
2.2浇筑混凝土前,将基层和模板浇水湿透,避免吸收混凝土中的水分。
2.3振捣密实,减少混凝土的收缩量。施工中应加强振捣,提高密实度,加强浇水养护,延迟收缩发生,以避免在早期混凝土强度较低时,出现过大的收缩而造成裂缝。
2.4混凝土浇筑后,在初凝前完成抹平工作,终凝前完成压光工作。建议推广二次抹压工艺。抹光后及时用潮湿的草袋或塑料薄膜覆盖,认真养护,也可喷涂混凝土养护剂。
2.5在气温高、风速大、干燥的天气时施工,加挡风设施。混凝土浇筑后应及早进行喷水养护,使其保持湿润。大面积混凝土宜浇完一段,养护一段。在炎热季节,需加强表面的抹压和养护。必要时加设遮阳挡风及喷雾设施等。
2.6采用合理的构造措施。收缩裂缝多出现在伸缩缝间距过大的建筑中,有的建筑物温度收缩的间距虽符合规范中使用要求,但由于施工周期长,结构在较长时间内为暴露在大气中的露天结构,其收缩变化明显比室内结构要大,因此,大多在施工期间出现裂缝,故在结构中断面薄弱处、应力集中处宜采取各种加强措施。
2.7避免各种应力叠加。混凝土体积较大时,要防止各种收缩应力叠加,在结构应力复杂、应力集中或应力较大的部位,特别要防止出现过大的收缩应力。
2.8掺加外加料。例如掺加膨胀剂可以抵消或大部分抵消混凝土的收缩应力,从而控制裂缝的产生。
3温度裂缝
水泥水化过程中放出大量的热,且主要集中在浇筑后的前7d内,一般每克水泥可以放出502J的热量,如果以水泥用量350kg/m3-550kg/m3来计算,每m3混凝土将放出17500kJ-27500kJ的热量,从而使混凝土内部温度升高。尤其对大体积混凝土来说,这种现象更严重。因为混凝土内部和表面的散热条件不同,所以,混凝生中心温度低,形成温度梯度,造成温度变形和温度应力。温度应力和温度成正比,当这种温度应力超过混凝土的内外约束应力(包括混凝土抗拉强度)时,就会产生裂缝。这种裂缝初期出现时很细,随着时间的发展而继续扩大,甚至达到贯穿的情况。
温度裂缝的控制措施:
3.1考虑选择粉煤灰水泥、矿渣水泥、火山灰水泥或复合水泥,对于体积较大的结构,应优先选择中热水泥甚至低热水泥。其次,可充分利用混凝土后期强度,以减少水泥用量。为更好地控制水化热所造成的温度升高,减少温度应力,可根据工程结构实际承受荷载时的情况,并和设计单位协商,以56d或90d抗压强度代替28d抗压强度作为设计强度。对大体积钢筋混凝土基础的高层建筑,28d不可能影响混凝土结构,特别是大体积钢筋混凝土基础施加设计荷载,因此,将试验混凝土标准强度的龄期推迟到56d或90d是合理的。
3.2浇筑大体积混凝土结构不得已而采用硅酸盐水泥或普通硅酸盐水泥时,应考虑在保证强度指标的情况下,掺加一定量活性掺合料(如粉煤灰、矿渣微粉等),活性掺合料对水泥的替代越大,降低混凝土温升的效果越好。掺加粉煤灰混凝土的温度和水化热,在1d-28d龄期内,掺入粉煤灰的百分数就是温度和水化热降低的百分数,即掺加20%粉煤灰的水泥混凝土,其温升和水化热约为未掺粉煤灰的水泥混凝土的80%,可见掺加粉煤灰对降低混凝土的水化热和温升的效果是非常显著的。
3.3在混凝土中掺加一定量的具有减水、增塑、缓凝、引气剂的外加剂,可以改善混凝土拌合物的流动性、粘聚性和保水性。由于其减水作用和分散作用,在降低用水量和提高强度的同时,还可以降低水化热,推迟放热峰的出现时间,因而减少温度裂缝。
关键词:连续刚构悬臂施工挂篮设计有限元
1.工程概况
韩家店1号特大桥是国道主干线重庆至湛江公路贵州省境内崇溪河至遵义高速公路上的一座特大型三跨预应力混凝土连续刚构桥,该桥主桥全长为454m,跨径设置为122m+210m+122m。该桥箱梁0号段长15m,其中桥墩两侧各外伸1.5m,每个“T”构沿纵桥方向分为36个对称梁段,梁段数及梁段长度从根部至跨中分别为10×2.2m,10×2.5m,13×3m,3×3.5m。桥体按整幅设计,箱梁采用单箱单室截面,顶板宽22.5m,底板宽11m,外翼板悬臂长5.57m,梁高由0号块处的12.5m以半抛物线形式从根部过度到跨中的3.5m。
2.挂篮形式的选取
2.1分段施工法与悬灌挂篮的演化
预应力混凝土桥梁的分段施工法是从预应力原理、箱梁设计和悬臂施工法综合演进而成的。自从二十世纪五十年代PC箱梁的分段施工法在西欧诞生以来[1],国内外大跨度桥梁多采用此法。除悬臂拼装法以外,尤其是特大桥梁中更是普遍应用平衡悬臂灌筑法——即单“T”的每一个设计节段利用挂篮对称就地浇筑混凝土。悬臂灌筑法中不需要象满堂支架法那样大量的施工支架和临时设备,不影响桥下通航和通车,施工不受季节、河道水位的影响。
平衡悬灌法施工的成败及质量控制的优劣在于挂篮的工艺设计,挂篮设计的好坏直接影响到施工进度,它是特大桥梁施工中的一项关键技术。
就挂篮总重与悬浇最大梁段的重量比而言,PC桥梁的悬臂施工挂篮的演化过程[2][3]大致经历了从平行桁架式,三角型组合梁式,曲弦桁架式(或称弓弦式),菱形式到滑动斜拉式的阶段变化。特点是结构越来越轻型化,受力越来越合理,有些挂篮的行走系统还设计有统一的液压伺服装置来控制挂篮的升降和行走,使得挂篮操作及施工控制越来越趋向智能化[4]。
2.2挂篮设计的轻型化
目前,挂篮已向轻型、重载方向发展。其中可以用两个主要控制指标β,β’来反映挂篮的设计优化与否。设定β=挂篮总重/悬浇节段重量,β’=主承重结构/悬浇节段重量。
β值越低,表示承受节段单位重量使用的挂篮材料越省,整个挂篮(包括模板)设计越合理;β’值越低,表示挂篮主承重构件使用的材料越省,设计越合理。另外,减轻挂篮自重采用的手段除优化结构形式外,最重要的措施是不设平衡重,并改善滑移系统,同时改进力的传递系统。
图1列出了国内外20座大桥的的β值分布,其中最大为2.18,最小为0.31。
图1国内外20座大桥的β值分布
2.3韩家店挂篮形式的选取
因悬灌施工中有多种因素制约挂篮的布置和结构设计,如施工状态大桥主梁的强度及变形要求,近海施工风荷载的影响,吊机的吨位及安装位置等等。一般来说,采用的挂篮须满足:结构简单,重量轻,安装、拆除方便,安全可靠,灌注混凝土过程中变形小等特点。
韩家店挂篮形式在参考了平弦无平衡重挂篮、菱形挂篮、弓弦式挂篮、斜拉式挂篮等结构形式后,从中选取了三角形挂篮形式,该挂篮与其它形式挂篮比较有如下突出特点:
⑴、三角形挂篮与菱形挂篮相比,降低了前横梁高度,即挂篮重心位置大大降低,从而提高了挂篮走行时的稳定性。
⑵、结构简单,拆装方便,重量较轻。设计中三角形挂篮主桁架和主要结构体系采用钢板和型钢焊制的箱形结构,单件重量较轻,主桁架杆件间采用法兰结构用高强螺栓连接,易于搬运和拆装。
⑶、该三角形挂篮平衡重系统利用已成形梁段竖向预应力钢筋作为后锚点,取消了平衡重的压重结构。
⑷、挂篮走行采用液压走行系统,由导梁、走行轮、反扣轮、走行油缸组成,该系统具有挂篮就位准确、走行速度快、安全可靠等特点。
⑸、该挂篮通用性强,稍做改装即可用于其它幅宽和梁高的桥上。
3.挂篮结构布置
该三角形挂篮由主桁、前横梁、底篮系统、前吊系统、内外模滑梁系统、后锚系统组成,挂篮总重(含内外模)约为1160kN,因模板以及吊杆随施工过程中截面高度的不断降低有一部分将会移去,对跨中合拢梁段所要求的支架重量须小于1300kN是显然满足的,所以减小荷载后的挂篮仍然可 总体布置图以及吊挂系统如图2-1、2-2所示。
4.挂篮的设计
4.1挂篮构件的传力过程
考察主梁设计截面的形状,单箱单室的截面形式至多可用8个相对独立的内外模板(外顶模2块+外侧模2块+底模1块+内顶模1块+内侧模2块)拼接而成。作为待浇梁段混凝土的支撑面,内、外顶模支撑翼缘板与顶板的混凝土重量,模板以上的重量则由间隔分布的8根内、外纵滑梁承受,内、外纵滑梁则把力传递到已浇梁段的顶板和前上横梁上安装的吊杆上。待浇腹板和底板混凝土的重量则通过底模传递给底栏纵、横梁,通过前、后下横梁上安装的吊带传力给已浇梁段的底板和前上横梁。而前上横梁的所有荷载则都传递到三角形主桁架上,三角形主桁架的前支点和后锚点把力再传给已浇梁段的顶板。浇注某一节段混凝土时挂篮构件的传力过程如图3所示。
图3浇注混凝土时挂篮构件的传力过程
4.2构件内力的计算
挂篮必须适应整个施工过程,因施工过程中节段荷载的不断变化,挂篮中各杆件的受力也是在不断变化之中,因此拟订一个最不利的施工过程进行计算,既可以优化杆件的设计,又可以确保施工安全。一般而言,拟订最不利施工过程的依据是待浇梁段混凝土的总体积最大,总重量最重。按设计划分的单“T”沿36个梁段的体积分布如图4所示。因为各构件在所有施工过程中的受力具有相对的独立性,有必要根据设计分段的情况把主梁截面细分,如34#节段(最长3.5m梁段)混凝土重量可能会对翼缘板外滑梁和顶板内滑梁产生最不利影响,1#节段(最重2.2m梁段)可能会对底模纵横梁以及前后吊挂构件产生最不利影响。事实上,根据设计节段长度的变化,拟订1#,11#,21#,34#四个施工节段混凝土重量对挂篮构件的效应可以涵盖其它施工节段,挂篮构件内力计算即以这四个施工节段为基准,空挂篮状态则以1#施工节段为基准计算。
图4单“T”沿36个梁段的体积
计算中挂篮系统采用空间(杆系+板块)有限元进行弹性分析,其中三角形主桁杆件、横联,上、下横梁,底篮纵梁,内、外纵滑梁用梁单元来模拟;吊杆、吊带用只拉杆单元来模拟;底篮模板采用具有较大刚性的板单元来模拟,计算模型如图5所示。这种空间模型较一般采用的平面杆系模型更能反映每根杆件或每块模板的受力和变形情况,避免了平面杆系模型中三角形主桁片杆件合并带来的杆件受力、变形平均化问题,对分析各杆件的真实受力状态有益,也对挂篮总体变形及施工标高的控制有益。
有限元法计算中的部分参数如表1所示。
表1挂篮构件内力计算中参数的选定
序号
材料
序号
荷载
⑴
16Mn钢
[σ]=200MPa
⑴
施工临时荷载重
2.0kN/m2
⑵
A3钢
[σ]=140MPa
⑵
施工冲击荷载重
1.5kN/m2
⑶
混凝土
容重γ
26.0kN/m3
⑶
模板重量根据该节
所用数量确定
模板采用
定型钢模
⑷
结构自重
程序自动加载
图5空间计算模型示意(其中符号:,分别表示支点和吊点)
图中A:三角形主桁架;B,C,D:上、下横梁;E:内、外滑梁;F,G:底篮前后吊带;H:纵滑梁吊杆;I:底篮模板及纵梁
4.3计算结果及分析
表2列出了挂篮在4个浇筑阶段(1#,11#,21#,34#施工节段)和空挂篮在1个行走阶段(1#2#施工节段)的构件应力计算结果。
表2浇筑阶段和行走阶段挂篮构件的最大应力(绝对值)(MPa)
杆件
编号
杆件
名称
浇筑阶段
行走阶段
1#
11#
21#
34#
1#2#
⑴
前后下弦杆
27.2
23.6
23.3
23.1
11.2
⑵
立柱
13.0
11.1
11.0
10.9
4.6
⑶
前后斜杆
40.7
35.1
34.5
34.2
15.0
⑷
前上横梁
38.4
33.5
34.8
36.2
14.9
⑸
前下横梁
18.7
15.1
13.1
9.4
4.5
⑹
后下横梁
22.3
17.5
10.5
6.6
6.0
⑺
底篮纵梁
93.8
73.8
48.8
26.0
3.0
⑻
前吊带
15.5
13.1
10.2
6.7
3.1
⑼
后吊带(绳)
35.1
28.1
19.7
11.4
74.7*
⑽
内外滑梁
112.4
99.6
113.4
125.1
97.5
⑾
滑梁吊杆
83.0
87.9
94.3
97.9
40.1
注:表中“*”号表示行走阶段后吊点采用钢丝绳。
与表2中五种工况对应的挂篮底篮的最大变形分别为:1#:11.3mm;11#:9.4mm;21#:8.8mm;34#:8.0mm;挂篮从1#行走至2#节段时为15.8mm。
从计算结果看,挂篮在整个施工过程中构件的应力是能够满足材料的允许值要求的。浇注混凝土过程中挂篮的变形较小说明挂篮的整体刚度较大,这有益于在实际施工中对线型及标高的控制,进而提高施工质量。
5结束语
韩家店1号特大桥通过选择三角形挂篮这种合理的挂篮形式,设计中充分了解了挂篮在施工过程和走行过程中各构件的传力机理,对挂篮在各种工况下建立了适用、合理的三维空间有限元模型,以至于能够比较完整地了解各杆件的受力和变形情况,计算结果满足各施工过程受力和变形的要求。
每一座悬灌施工的大桥都有其自身的特点,这需要综合考虑大桥本身因素以及围绕大桥伴生的各种因素对挂篮选择的影响。技术层面上,对选定的挂篮还需进一步优化结构形式和杆件的设计。轻型、重载的挂篮结构形式对增强施工现场的可操作性、创造经济效益有着重要意义!
参考文献:
[1]预应力混凝土桥梁分段施工和设计,[美]小沃尔特·波多尔尼[法]J·M·米勒尔,1986.4,万国朝,黄邦本译
[2]PC桥梁悬臂灌注施工挂篮的发展,王武勤,桥梁建设,1997年第4期,p55~p57
[3]轻型鹰式挂篮的总体设计,刘刚亮,王中文,桥梁建设,1998年第4期,p62~p64
关键词:预应力混凝土空心板,裂缝
预应力空心板是桥梁工程的主要受力结构,保证预应力空心板的质量首先要把好混凝土的预制质量关,才可以有效预防混凝土裂缝的发生。本人根据自己在青海青南地区某桥梁空心板施工中发生裂缝现象后,及时采取措施对梁板的预制全过程进行了调查分析,查阅有关试验资料,对施工工艺做了详细了解,找出了产生裂缝产生的原因,提出了改进措施,使预应力混凝土空心板表面裂缝得到了控制,有效防止了混凝土表面裂缝的再次发生。
一、概述
该桥地处青海青南地区,海拔4200米。下面是该桥的有关参数:
1、结构类型:跨径16m预应力混凝土空心板;
2、混凝土设计强度:50Mpa;
3、混凝土配合比:水泥:砂:碎石:水=1:1.44:2.58:0.38
4、水泥用量:P42.5级水泥450kg/m3
二、裂缝的产生
空心板在混凝土浇筑完成拆模后,沿连接筋竖向产生50—150mm,宽度为0.02—8.08mm的裂缝,顶面也出现50—100mm,宽为0.02—0.12mm的裂缝。凿开混凝土裂缝发现,裂缝深度在0—5mm之间,初步判定为收缩裂缝或温度裂缝,不影响空心板的正常使用,但考虑预应力刚绞线放张后,有使混凝土顶面抗拉强度降低,致使裂缝长度、宽度和深度增长的可能,为此,分析裂缝产生的原因和改进措施是完全必要的。混凝土裂缝在浇筑后24h内产生,这时混凝土最敏感,易产生震动裂缝、收缩裂缝和沉陷裂缝。早期裂缝一旦发生,会增加混凝土的渗透性,并使混凝土暴露于易损伤环境的表面增加,这使混凝土早期老化,裂缝的产生使混凝土渗水性增大,从而影响其耐久性和缩短其使用寿命。
三、裂缝产生的原因分析
1、水泥采用42.5级,经检验符合规范要求,水泥用量:500kg/m3。
高强混凝土由于其水泥用量大多在450—600kg/m3,是普通混凝土的1.5—2倍。这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝土,出现收缩裂缝的几率也大于普通混凝土。
高强混凝土因采用高标号水泥且水泥用量大,这样在混凝土硬化过程中,水化放热量大,将加大混凝土的最高温升,从而使混凝土的温度收缩应力加大。再叠加其他因素的情况下,很有可能导致温度收缩裂缝。由于高强水泥混凝土中水泥含量是普通混凝土的1.5倍,在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。
碎石经检验级配符合规范要求,压碎值8.3%<12%(规范指标),含泥量0.7%,不符合规范要求。
砂采用河床中砂,含泥量4.2%>3%,不符合规范要求,级配符合规范要求。
水采用河水,属饮用水。
减水剂符合规范要求。
碎石和砂含泥量超标,对混凝土表面裂缝有一定的影响,水泥用量过大,也是混凝土表面产生裂缝的主要因素。
2、设备因素
对张拉设备进行校验,如果张拉用的千斤顶仪表不准,张拉力超过设计值,造成台座变形位移,假如浇筑完混凝土后台座发生变形,混凝土表面就会产生裂缝。经检查,设备符合要求,台座地基满足要求,没有发现台座变形、位移、下沉现象。
3、施工工艺因素
(1)、混凝土的拌制。拌和设备是500型强制式搅拌机,操作时拌和时间为1min左右,时间过短影响混凝土的均匀性,取其坍落度为3.5,判定水灰比过大,混凝土干缩量增大,产生干缩裂缝。硕士论文,预应力混凝土空心板。
(2)、混凝土浇注。工地采用插入式振动器振捣,振捣过程出现过振现象,致使混凝土表面粗细集料离析,靠近模板的混凝土表面细集料集中。
(3)、混凝土养生。现场操作往往是等混凝土脱模后才开始养生,空心板顶面裸露在大气中,加快了水分的蒸发,致使表面干缩裂缝。
4、混凝土内箍筋的影响因素
由于钢筋和混凝土膨胀率的差异,钢筋的膨胀率大于混凝土的膨胀率,混凝土表面的拉应力小于钢筋膨胀所产生的应力,从而使混凝土表面拉裂。硕士论文,预应力混凝土空心板。
5、混凝土自身应力产生的裂缝
(1)、收缩裂缝。混凝土的干燥过程是由表面逐步扩展到内部的,在混凝土内呈现含水梯度,因此产生表面收缩大,内部收缩小的不均匀收缩,致使表面混凝土承受拉力,内部混凝土承受压力,当表面混凝土所产生的拉力超过其抗拉强度时便产生收缩裂缝。
(2)、温度裂缝。混凝土由于水化热作用、阳光照射、昼夜温差大等因素影响致使其内部与表面温差过大,这时内部混凝土受压应力,表面混凝土受拉应力,由于混凝土抗压强度远大于抗拉强度,在表面拉应力达到并超过混凝土抗拉强度时产生间距大致相等的直线裂缝即温度裂缝,该结构裂缝形态正是如此。
四、裂缝的预防措施
1、严把原材料质量关。进场材料必须经严格检验后方可使用,对高标号混凝土使用高标号水泥,减少水泥用量,水泥初凝时间必须大于45分钟。细集料使用级配良好的中砂,细度模数应大于2.6,含泥量小于2%。粗骨料使用质地坚硬、级配良好的碎石,含泥量小于1%,针片状颗粒含量应小于5%。严格控制水灰比,保证水用量控制在标准之内。硕士论文,预应力混凝土空心板。
2、混凝土的拌和。硕士论文,预应力混凝土空心板。细致分析混凝土的配合比,控制其水灰比,减少坍落度,合理掺加减水剂。硕士论文,预应力混凝土空心板。混凝土拌和时间控制在2min,搅拌时间短混合料不均匀,时间过长,会破坏材料的结构。硕士论文,预应力混凝土空心板。保证混凝土的均匀性,严格控制加水量,经常检测混凝土的坍落度,以保证其具有良好的和易性。
3、混凝土的浇注。混凝土浇注应选择一天中温度较低的时候进行,采用插入式振捣器时移动间距不应超过振捣器作用半径的1.5倍,对每一振捣部位必须振动到混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆,边振动边徐徐提出振动器,避免过振,造成混凝土离析。
4、混凝土的养生。不论是收缩裂缝还是温度裂缝,混凝土的养生最为关键。在混凝土浇注收浆结束后,尽快以草帘覆盖和洒水养生,使混凝土表面始终保持在湿润状态,不允许混凝土在高温下裸露暴晒。由于水泥在水化过程中产生很多的热量,混凝土浇注完成后必须在侧模外喷水散热,以免混凝土由于温度过高,体积膨胀过大,在冷却后体积收缩过大产生裂缝,混凝土养生时间不少于两周。
5、芯模。充气芯模在使用前应经过检查,不得漏气,有些混凝土空心板顶面裂缝就是由于混凝土在未达到2.5Zpa时芯模漏气,致使顶面混凝土开裂。
五、结论
通过以上改进措施,混凝土表面裂缝逐渐消失。预应力混凝土空心板是桥梁的承重结构,因此,在预制前,必须要制定出施工工艺流程,对所有参与施工的人员进行技术交底,掌握关键工序的施工技术要点,严格按规范要求检测各项指标,发现异常及时找出问题产生的原因,采取合理的处理措施加以解决,确保混凝土空心板的施工质量。
关键词:桥梁施工事故处理
l引言
混凝土因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。混凝土最主要的缺点是抗拉能力差,容易开裂。大量的工程实践和理论分析表明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。我国现行公路、铁路、建筑、水利等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。本文所讨论的仅指后一类裂缝。
近年来,我国交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。在桥梁建造和使用过程中,有关因出现裂缝而影响工程质量甚至导桥梁垮塌的报道屡见不鲜。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土桥梁裂缝的种类和产生的原因作较全面的分析、总结,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。
l混凝土桥梁裂缝种类、成因
实际上,混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:
一、荷载引起的裂缝
混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。
直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:
1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
3、使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。
次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有:
1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
2、桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。
实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。
荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。根据结构不同受力方式,产生的裂缝特征如下:
1、中心受拉。裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。
2、中心受压。沿构件出现平行于受力方向的短而密的平行裂缝。
3、受弯。弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。
4、大偏心受压。大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。
5、小偏心受压。小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。
6、受剪。当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。
7、受扭。构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。
8、受冲切。沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。
9、局部受压。在局部受压区出现与压力方向大致平行的多条短裂缝。
二、温度变化引起的裂缝
混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:
1、年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。
2、日照。桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。
3、骤然降温。突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。
4、水化热。出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。
5、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。
6、预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。
三、收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。
塑性收缩。发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。
缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
研究表明,影响混凝土收缩裂缝的主要因素有:
1、水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。
2、骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。
3、水灰比。用水量越大,水灰比越高,混凝土收缩越大。
4、外掺剂。外掺剂保水性越好,则混凝土收缩越小。
5、养护方法。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。
6、外界环境。大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。
7、振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以5~15s/次为宜。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。
对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。
四、地基础变形引起的裂缝
由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:
1、地质勘察精度不够、试验资料不准。在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。
2、地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。
3、结构荷载差异太大。在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。
4、结构基础类型差别大。同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。
5、分期建造的基础。在原有桥梁基础附近新建桥梁时,如分期修建的高速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。
6、地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。
7、桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。
8、桥梁建成以后,原有地基条件变化。大多数天然地基和人工地基浸水后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加,基础受荷加大。有些桥梁基础埋置过浅,受洪水冲刷、淘挖,基础可能位移。地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、砂石等,桥址范围土层可能受压缩再次变形。因此,使用期间原有地基条件变化均可能造成不均匀沉降。
对于拱桥等产生水平推力的结构物,对地质情况掌握不够、设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。
五、钢筋锈蚀引起的裂缝
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。
要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。
六、冻胀引起的裂缝
大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。
温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。
七、施工材料质量引起的裂缝
混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
1、水泥
(1)、水泥安定性不合格,水泥中游离的氧化钙含量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。
(2)、水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。
(3)、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。
2、砂、石骨料
(1)、砂石的粒径、级配、杂质含量。
砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。
(2)、碱骨料反应。
碱骨料反应有三种类型:
①、碱硅酸反应。参与这种反应的骨料有流纹岩、安山岩、凝灰岩、蛋白石、黑硅石、燧石、鳞石英、玻璃质火山岩、玉髓及微晶或变质石英等。反应发生于碱与微晶氧化硅之间,其生成物硅胶体遇水膨胀,在混凝土中产生很大的内应力,可导致混凝土突然爆裂。这类反应是碱骨料反应的主要形式。
②、碱硅酸盐反应。参与这种反应的骨料有粘土质岩石、千枚岩、硬砂岩、粉砂岩等。此类反应的特点是膨胀速度非常缓慢,混凝土从膨胀到开裂,能渗出的凝胶很少。
③、碱碳酸岩反应。多数碳酸岩石没有碱活性,有特定结构的泥质细粒白云质灰岩和泥质细粒灰质白云岩才具有与碱反应的碱活性,且还须高碱度、一定湿度环境下才能反应膨胀。
碱骨料反应裂缝的形状及分布与钢筋限制有关,当限制力小时,常出现地图状裂缝,并在缝中有白色或透明的浸出物;当限制力强时则出现顺筋裂缝。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量低的水泥品种。
3、拌和水及外加剂
拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。
八、施工工艺质量引起的裂缝
在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:
1、混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。
2、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。
3、混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。
4、混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。
5、混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。
6、用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。
7、混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。
8、混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。
9、施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。
10、施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
11、施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。
12、装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。
13、安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。
14、施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。
论文摘要:变形作用会引起工程结构中混凝土裂缝以及其他一些问题。文章凭借在大量的施工中积累的处理裂缝的经验以及坚实的理论研究,提出了建筑工程结构中混凝土裂缝原因及预防措施。
混凝土结构的施工,需要在模板及其支架的支护下进行,由于种种不良因素对这两种不同系统的作用,常常诱发施工期混凝土结构质量事故。目前,在工程结构领域中一个相当普遍的问题是建筑裂缝,并且近年来日趋增强,它已影响到生产和生活,并困扰着大批工程技术人员和管理人员,是迫切需要解决的技术难题。
混凝土工程裂缝影响工程质量的主要因素。裂缝产生的原因主要是变形作用,如温度变形、收缩变形、基础不均匀沉降变形等多因素,� 对于变形作用引起混凝土裂缝研究还很不成熟,国家缺乏相关规范及规程,它涉及结构设计、地基基础、施工技术、材料质量、环境状态等诸多因素,特别是泵送混凝土施工工艺的发展,使得混凝土裂缝控制的技术难度大大增加。
一、混凝土裂缝预防措施
(一)结构方面
根据混凝土结构设计规程,为避免结构由于温度收缩应力引起的开裂,采取永久式伸缩的方法,根据现场调查,引起结构裂缝的原因是综合性的,结构长度是影响收缩应力综合因素之一,而不是惟一的因素。
根据现场实践经验,混凝土裂缝分为有害的及无害的两类。有害与无害的界限由使用功能而定。施工单位应当采取必要的设计及施工措施,以控制有害裂缝的产生。由于估计不足等因素,即使出现少量有害裂缝,也要通过化学灌浆处理,使其满足设计使用要求。结构所受到的外部作用分为外荷载,可看作是第一类荷载;具有十分重要的外部作用是变形作用,即第二类荷载为间接荷载。变形作用包括温度、湿度、地基不均匀沉降,在该作用下,结构的抗力取决于混凝土的抗拉性能,即抗拉强度和抗拉变形。
(二)施工方面
由施工单位委托搅拌站向现场供应商品混凝土时,委托的技术依据只有设计院确定的强度等级,却忽略了工程特点对大体积混凝土性能的要求,这样对控制混凝土裂缝是不利的。施工单位应在混凝土浇筑部门对混凝浇筑、振捣、养护及坍落度控制做出技术方案,并严格执行,特别是对坍落度的控制更应得到搅拌站的同意。施工新浇筑混凝土养护方法有:(1)潮湿养护;(2)养护剂涂层;(3)自动给水养护;(4)保湿养护;(5)防风;(6)实现信息化施工养护;(7)尽快回填。
(三)混凝土材质方面
泵送商品混凝土对原材料供应有很高的技术要求。由于泵送混凝土的流动性要求与抗裂的要求相互矛盾,所以应当选取在满足泵送的坍落度下限条件下尽可能降低水灰比。目前国内搅拌站对砂石骨料的含水控制波动很大,影响了混凝土的水灰比。利用较精确的含水率测定仪或传感器,测出配料过程中的含水率,进行计算机处理,自动调整配料的水灰比,对于控制混凝土的收缩和提高抗裂是必要的。
砂石的含泥量对混凝土的抗拉强度与收缩影响很大。我国对含泥量的规定比较宽,但现在实际施工中还经常超标。有的搅拌站,虽然检验资料是合格的,但在浇捣中发现有大量泥块和杂质,这样就会引起结构严重开裂。因此在实际施工中,砂石骨料的粒径应尽可能大一些,以达到减少收缩的目的。
(四)环境影响
混凝土的裂缝与环境条件(施工期和施工后)有很大关系。施工过程中应注意气温和湿度的变化,采取有效措施控制高温、低温冲击和激烈干燥冲击,此时,应力状态接近弹性应力状态,混凝土应力松弛效应无法发挥出来,特别注意浇筑后经过一定时期养护的混凝土仍然需要保护(维护),不宜长期。注意与气象站的密切联系(降温及降雨预报),不得在雨中浇筑混凝土,否则会严重改变水灰比。
结构施工后验收投入使用,由于环境变化(如生产使用条件、房屋装修改变条件),承受了新的温度、湿度、振动(包括相邻振动)、化学腐蚀及荷载变化影响等,都可能引起后期开裂。
二、混凝土裂缝限制标准
混凝土裂缝是不可避免的,其微观裂缝是本身物理力学性质决定的,但它的有害程度是可以控制的。有害程度的标准是根据使用条件决定的,如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.1mm。近年来,许多国家已根据大量试验与泵送混凝土的经验将其放宽到0.2mm。
如果结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,那么混凝土裂缝宽度可放宽至0.4mm;在温气及土封号为0.3mm;在海水及干湿交替中为0.15mm。当沿裂缝有害程度高时,必须处理。
近年来,由于房屋产权体制的改变及生活水平的提高,对房屋质量要求更加严格,虽然经鉴定认为没有影响安全的有害裂缝,但从美观和精神作用的要求,应用适当的允许范围;当观察人距离结构20~50cm时,可看清0.05mm宽度的裂缝,是最严格的要求;距离1~2cm时可看清0.1~0.2mm的裂缝,是一般要求;距离5~10cm时可看清0.5~1.0mm的裂缝,是必须修补的裂缝,有时虽然裂缝不宽,但是呈网状密布,给人一种精神上的不愉快的感觉,需要修补;对有渗水的任何宽度裂缝必须处理。上述这类裂缝经处理后满足正常使用要求,不应据此降低评定等级。
三、结语
混凝土结构的施工,绝对安全是不可能达到的,但在可接受的概率水平上可以得到保证,该水平可以通过可靠性理论的应用得到。当前,可靠性理论应用于混凝土结构施工期质量控制的基础工作,是开展与施工期荷载、抗力有关的参量统计参数的观测调查和统计分析,以获取基于全国范围数据的分析结果。
参考文献
[1]徐国明.混凝土结构绑扎箍筋长度[J].建筑结构,2005,(10).
[2]王东海.水工混凝土建筑物裂缝产生原因与处理方法[J].山西建筑,2007,(16).
关键词:混凝土;裂缝;成因;预防
一、混凝土裂缝的分类
混凝土裂缝是混凝土的一种常见病和多发病。病情绝大多数发生于施工阶段,其原因复杂多变,一般可分为无害裂缝和有害裂缝两大类。无害裂缝是指肉眼看不到的、砼内部固有的一种裂缝,它是不连贯的。宽度一般在0.05mm以下,这种砼本身固有的微观裂缝,荷载不超过设计规定的条件下,一般视为无害。有害裂缝宽度在0.05mm以上,并
二、混凝土裂缝的成因
裂缝产生的形式和种类很多,有设计方面的原因,但更多的是施工过程的各种因素组合产生的。
(一)砼的收缩
收缩是砼的一个主要特性,对砼的性能有很大影响。由于收缩而产生的微观裂缝一旦发展,则有可能引起结构物的开裂、变形甚至破坏。产生收缩裂缝的原因,一般认为在施工阶段因水泥水化热及外部气温的作用引起砼收缩而产生的裂缝。多为规则的条状,很少交叉。常发生在结构变截面处,往往与受力钢筋平行。收缩裂缝多发生在大体积砼中,梁、板、柱等小块体构件,预应力构件极少产生收缩裂缝。砼收缩裂缝危害较大,尤其是暴露在大气中的构筑物,影响更大。如不加以防止,可能会造成严重后果。
(二)混凝土材料及配合比
配合比设计不当直接影响砼的抗拉强度,是造成砼开裂不可忽视的原因。配合比不当指水泥用量过大,水灰比大,含砂率不适当,骨料种类不佳,选用外加剂不当等,这几个因素是互相关联的。有关试验资料显示:用水量不变时。水泥用量每增加10%,混凝土收缩增加5%;水泥用量不变时,用水量每增加10%,混凝土强度降低20%,混凝土与钢筋的粘结力降低10%。合肥市近两年发现不少商品混凝土浇捣的楼板出现裂缝,总结的原因有如下方面:
1、粗细集料含泥量过大,造成混凝土收缩增大。集料颗粒级配不良或采取不恰当的间断级配,容易造成混凝土收缩的增大,诱导裂缝的产生。
2、骨料粒径越细、针片含量越大,混凝土单方用灰量、用水量增多,收缩量增大。
3、混凝土外加剂、掺和料选择不当、或掺量不当,严重增加混凝土收缩。
4、水泥品种原因,矿渣硅酸盐水泥收缩比普通硅酸盐水泥收缩大。
5、水泥等级及混凝土强度等级原因:水泥等级越高、细度越细、早强越高对混凝土开裂影响很大。混凝土设计强度等级越高,混凝土脆性越大、越易开裂。
(三)施工及现场养护原因
1、现场浇捣混凝土时,振捣或插入不当,漏振、过振或振捣棒抽撤过快,均会影响混凝土的密实性和均匀性,诱导裂缝的产生。
2、高空浇注混凝土,风速过大、烈日暴晒,混凝土收缩值大。
3、对大体积混凝土工程,缺少两次抹面,易产生表面收缩裂缝。
4、大体积混凝土浇注,对水化计算不准、现场混凝土降温及保温工作不到位,引起混凝土内部温度过高或内外温差过大,混凝土产生温度裂缝。
5、现场养护措施不到位,混凝土早期脱水,引起收缩裂缝。
6、现场模板拆除不当,引起拆模裂缝或拆模过早。
7、现场预应力张拉不当(超张、偏心),引起混凝土张拉裂缝。
这些因素都会造成砼较大的收缩,产生龟裂裂缝或疏松裂缝,致使砼微观裂缝迅速扩展,形成宏观裂缝。
养护是使砼正常硬化的重要手段。养护条件对裂缝的出现有着关键的影响。在标准养护条件下,砼硬化正常,不会开裂,但只适用于试块或是工厂的预制件生产,现场施工中不可能拥有这种条件。但是必须注意到,现场砼养护越接近标准条件,砼开裂可能性就越小。
(四)使用原因(外界因素)
1、构筑物基础不均匀沉降,产生沉降裂缝。
2、使用荷载超负。
3、野蛮装修,随意拆除承重墙或凿洞等,引起裂缝。
4、周围环境影响,酸、碱、盐等对构筑物的侵蚀,引起裂缝。
5、意外事件,火灾、轻度地震等引起构筑物的裂缝。
三、混凝土裂缝预防措施
根据砼裂缝成因,采取适当措施进行预防要比事后补救有效的多。也就是说采取以防为主的方法,归纳起来,可以从以下几个方面着手:
1、设计
在设计上要注意到那些容易开裂的部位,如深基与浅基、高低跨处等,应考虑到由于地基的差异沉降或结构原因而引起的薄弱环节,在设计中加以解决。在构件截面允许、配筋率不变而且浇筑方便的条件下,钢筋直径越细、间距越小则对预防开裂越有利。
2、施工方案
好的施工方案与预防、控制裂缝有很大的关系。施工方案主要应确定一定浇筑量、施工缝间距、位置及构造、浇筑时间、运输及振捣等。一次浇筑长度由垂直施工缝分割,最好是设置在变截面处或承受拉、剪、弯应力较小的部位。除控制一次浇筑厚度外,分层位置即水平施工缝留设位置也应加以注意,一般来说,因尽量留在变截面处,或远离受拉钢筋部位而设在砼的受压区,确定浇筑时间的原则应尽量避开炎热天气和昼夜温差大的日子。如果必须在夏季施工,则应采取材料降温措施来控制砼入模温度。
3、施工质量
由于施工质量原因而产生的裂缝发生率在95%以上。如果在施工阶段控制住了裂缝,则在使用阶段开裂的可能性就很小了。因此,施工阶段是裂缝预防的主要阶段,在施工阶段要注意以下几个问题:首先砼要有合适的配合比,选择合适的配合比,不仅要满足强度要求、施工要求,还要从防止产生裂缝的需要出发。其次适当地选择好水灰比,在满足强度要求的原则下,尽可能减少水泥用量。其次钢筋的成型和模板安装位置要准确、牢固,以免施工中变形。钢筋上的污物和氧化铁皮要清除,以免影响粘结力。最后是浇筑、振捣操作合理,特别是振捣操作技术,往往不被人们重视。过分地振捣对砼均匀性有害,振捣不足也不能保证砼应有的密实度,要恰到好处。
4、养护
养护的目的是使砼正常硬化,强度增长,不受或少受外界影响。技术关键是设法使砼温度级慢慢下降到接近外界气温,缩小降温过程中的温差。以便减小温度应力,阻力裂缝的产生。
常规养护方法是喷水,对一般砼结构,减小表面收缩,防止龟裂是可行的。大体积砼由于块体内外温度不一致,强度增长不同,常常是在强度增长慢的表面开裂,其养护就不能只满足于用常规方法。具体说,尽量晚拆模,拆模后要立即覆盖或及时回填,避开外界气候的影响,养护期应以砼强度增长最快的阶段为准,即7至28天,最好能长些。
论文摘要:混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程因施工过程中产生的裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命等。因而防止楼板开裂已�
一、楼板裂缝的开展大多有以下几种情况
(一)裂缝在板面沿楼板支座边300mm范围内平行于支座开展,甚至板的四周都出现裂缝并且连续;
(二)在板角处裂缝与相邻两支座成45度角展开;
(三)与施工井架位置相接的楼板常出现裂缝。
这些裂缝大多在工程竣工后一段时间才被发现,往往这时楼板还几乎没有使用荷载。有时裂缝宽度在水泥沙浆找平层表面被放大了,实际上在混凝土楼板的裂缝宽度大多在0.3mm以下,裂缝的深度在15mm左右。
二、楼板裂缝的原因主要有以下几种
(一)干缩裂缝
混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、骨料的性质和用量、外加剂的用量等有关。硬化混凝土在约束条件下的干缩是楼板产生裂缝的一个比较常见的原因。水泥的水化或混凝土中水分的蒸发会引起混凝土干缩。此外,楼板混凝土的收缩也受到结构的另一部分(如混凝土梁、柱)的约束而引起拉应力,拉应力超过混凝土抗拉强度时混凝土将会产生裂缝,并且能够在比开裂应力小得多的应力作用下扩展延伸。
(二)塑性收缩裂缝
塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。
(三)支撑沉陷裂缝
新浇混凝土楼板容易在模板、支撑变形的情况下产生裂缝。由于支撑的刚度不足或梁板支撑刚度差异较大,在荷载作用下变形沉陷,施工期间的过度震动使支撑刚度变异部位多次瞬间相对位移以及过早拆模等等都可能使混凝土在发展足够强度以支撑其自身重量之前产生裂缝。沉陷变形也是混凝土楼板裂缝开展的另一个常见原因。
(四)温度裂缝
混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力,当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝。
(五)化学反应引起的裂缝
碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。
就施工因素来说,楼板的模板、支撑变形或沉陷,混凝土的制作和捣实工艺等许多方面的施工质量问题以及缺乏养护都会增加产生裂缝或引致裂缝发展的可能性。因此,裂缝的发生和延伸开展与混凝土内在的特性和多种施工因素可能同时存在某种关系。也就是说,同一条裂缝的开展往往由多个原因所造成。
三、针对裂缝产生的原因,在施工因素方面采取相应措施,以减少楼板裂缝的产生。为此,在混凝土施工中,在工序和工艺方面应当注意下列几个问题
(一)严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量,混凝土应使用设计允许的最小水泥用量和能满足和易性要求的最小用水量,设备允许情况下,不要用过大的塌落度。使用各种外加剂时要注意,尽量不要选用增加混凝土干缩的外加剂;选择合适的水泥品种,使混凝土收缩减少,凝固时间合适;混凝土内砂石水泥的级配力求最优。(二)浇筑混凝土之前,将模板浇水均匀湿透。
(三)模板及其支撑系统要有足够的刚度,且支撑牢固,并使地基受力均匀。楼板模板支撑的间距要适宜,使楼板模板刚度与梁模板刚度不至于相差太大。在与施工井架相接的或施工运输频繁经过的楼板模板中适当加强模板支撑系统。
(四)了解预拌混凝土的级配情况,对某些级配的混凝土,不要过度振捣楼板混凝土,过度的振捣会使混凝土产生离析和泌水,使混凝土楼板表面形成水泥含量较多的沙浆层和水泥浆层,容易产生干缩裂缝。由于一般楼板的厚度不大,使用平板振动器匀速拖过一次就可使楼板的混凝土成型密实。要在混凝土沉淀收缩基本完成后才开始楼板的最终抹面。
(五)在楼板的混凝土施工完成后,要等楼板混凝土有一定的强度后才进行下一道工序的施工。在混凝土终凝初期应避免施工荷载对楼板产生较大的震动。特别是与施工井架相接的楼板,其混凝土施工完成是最后的,而上施工荷载受震动是最早和最频繁的。有些施工单位为了抢工期,在楼板混凝土捣制完成后第二天就上人上材料进行下一道工序施工,往往导致这位置的楼板多处产生裂缝。
(六)施工期间不要过早拆除楼板的模板支架,且要注意拆模的先后次序。必要时可在拆除模板后在适当位置上安装回头顶。施工机具和材料不要集中堆放在一块楼板上,避免造成较大的荷载使还未达到强度的混凝土楼板产生裂缝。
(七)了解预拌混凝土的收缩曲线,加强混凝土养护,保持混凝土楼板表面湿润。在常温下养护不少于两周,特别是在混凝土终凝初期,要严格按要求进行浇水养护。养护期后,在施工期间特别干燥的时候也应进行浇水养护。
四、裂缝的处理
修补前需要对楼板裂缝进行检测与研究以确定裂缝部位、开裂程度和裂缝产生的原因等。根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法等。
五、结束语
楼板裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土楼板裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
参考文献:
[1]钢筋混凝土结构设计规范。中国建筑工业出版社,1999.2.
[2]鞠丽艳。混凝土裂缝抑制措施的研究进展。混凝土,2002.5.
[3]郭仕万,肖欣,赵和平。混凝土施工中的裂缝控制。山西水利科技,2000.11.
[4]鞠丽艳,张雄。混凝土裂缝防治的两种新方法。施工技术,2002.7.
论文摘要:混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程因施工过程中产生的裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命等。因而防止楼板开裂已�
一、楼板裂缝的开展大多有以下几种情况
(一)裂缝在板面沿楼板支座边300mm范围内平行于支座开展,甚至板的四周都出现裂缝并且连续;
(二)在板角处裂缝与相邻两支座成45度角展开;
(三)与施工井架位置相接的楼板常出现裂缝。
这些裂缝大多在工程竣工后一段时间才被发现,往往这时楼板还几乎没有使用荷载。有时裂缝宽度在水泥沙浆找平层表面被放大了,实际上在混凝土楼板的裂缝宽度大多在0.3mm以下,裂缝的深度在15mm左右。
二、楼板裂缝的原因主要有以下几种
(一)干缩裂缝
混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、骨料的性质和用量、外加剂的用量等有关。硬化混凝土在约束条件下的干缩是楼板产生裂缝的一个比较常见的原因。水泥的水化或混凝土中水分的蒸发会引起混凝土干缩。此外,楼板混凝土的收缩也受到结构的另一部分(如混凝土梁、柱)的约束而引起拉应力,拉应力超过混凝土抗拉强度时混凝土将会产生裂缝,并且能够在比开裂应力小得多的应力作用下扩展延伸。
(二)塑性收缩裂缝
塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。
(三)支撑沉陷裂缝
新浇混凝土楼板容易在模板、支撑变形的情况下产生裂缝。由于支撑的刚度不足或梁板支撑刚度差异较大,在荷载作用下变形沉陷,施工期间的过度震动使支撑刚度变异部位多次瞬间相对位移以及过早拆模等等都可能使混凝土在发展足够强度以支撑其自身重量之前产生裂缝。沉陷变形也是混凝土楼板裂缝开展的另一个常见原因。
(四)温度裂缝
混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热,由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,这样就形成内外的较大温差,较大的温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力,当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝。
(五)化学反应引起的裂缝
碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。
就施工因素来说,楼板的模板、支撑变形或沉陷,混凝土的制作和捣实工艺等许多方面的施工质量问题以及缺乏养护都会增加产生裂缝或引致裂缝发展的可能性。因此,裂缝的发生和延伸开展与混凝土内在的特性和多种施工因素可能同时存在某种关系。也就是说,同一条裂缝的开展往往由多个原因所造成。[三、针对裂缝产生的原因,在施工因素方面采取相应措施,以减少楼板裂缝的产生。为此,在混凝土施工中,在工序和工艺方面应当注意下列几个问题
(一)严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量,混凝土应使用设计允许的最小水泥用量和能满足和易性要求的最小用水量,设备允许情况下,不要用过大的塌落度。使用各种外加剂时要注意,尽量不要选用增加混凝土干缩的外加剂;选择合适的水泥品种,使混凝土收缩减少,凝固时间合适;混凝土内砂石水泥的级配力求最优。[(二)浇筑混凝土之前,将模板浇水均匀湿透。
(三)模板及其支撑系统要有足够的刚度,且支撑牢固,并使地基受力均匀。楼板模板支撑的间距要适宜,使楼板模板刚度与梁模板刚度不至于相差太大。在与施工井架相接的或施工运输频繁经过的楼板模板中适当加强模板支撑系统。
(四)了解预拌混凝土的级配情况,对某些级配的混凝土,不要过度振捣楼板混凝土,过度的振捣会使混凝土产生离析和泌水,使混凝土楼板表面形成水泥含量较多的沙浆层和水泥浆层,容易产生干缩裂缝。由于一般楼板的厚度不大,使用平板振动器匀速拖过一次就可使楼板的混凝土成型密实。要在混凝土沉淀收缩基本完成后才开始楼板的最终抹面。
(五)在楼板的混凝土施工完成后,要等楼板混凝土有一定的强度后才进行下一道工序的施工。在混凝土终凝初期应避免施工荷载对楼板产生较大的震动。特别是与施工井架相接的楼板,其混凝土施工完成是最后的,而上施工荷载受震动是最早和最频繁的。有些施工单位为了抢工期,在楼板混凝土捣制完成后第二天就上人上材料进行下一道工序施工,往往导致这位置的楼板多处产生裂缝。
(六)施工期间不要过早拆除楼板的模板支架,且要注意拆模的先后次序。必要时可在拆除模板后在适当位置上安装回头顶。施工机具和材料不要集中堆放在一块楼板上,避免造成较大的荷载使还未达到强度的混凝土楼板产生裂缝。
(七)了解预拌混凝土的收缩曲线,加强混凝土养护,保持混凝土楼板表面湿润。在常温下养护不少于两周,特别是在混凝土终凝初期,要严格按要求进行浇水养护。养护期后,在施工期间特别干燥的时候也应进行浇水养护。
四、裂缝的处理
修补前需要对楼板裂缝进行检测与研究以确定裂缝部位、开裂程度和裂缝产生的原因等。根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法等。
五、结束语
楼板裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土楼板裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。
参考文献:
[1]钢筋混凝土结构设计规范。中国建筑工业出版社,1999.2.
[2]鞠丽艳。混凝土裂缝抑制措施的研究进展。混凝土,2002.5.
[3]郭仕万,肖欣,赵和平。混凝土施工中的裂缝控制。山西水利科技,2000.11.
在大体积的混凝土受到高温之后,遇到开裂的主要问题就是地下室容易渗水。地下室渗水的问题不太容易解决。总是给使用者带来很大问题,会使得室内潮湿霉腐等。在修补裂缝这项工作上,花费总是很大,而且工期比较长,使用者往往难以承受长期的不便。各种裂缝都有可能会引起刚度的降低,尤其是在基础部分方面,很有可能会影响建筑物的安全稳定。混凝土对于高温的适应能力并不高。因此需要混凝土能够有着更多的适应能力,对于建筑物的稳定有着不容忽视的作用。因为一旦形成裂缝,长期下去就会存在安全隐患。设计的分布状态也会因此改变。能够使局部或者整体结构发生相应的改变。我们必须要注意底结构的承载能力,保证安全。在裂缝出现之后,往往会影响混凝土的内部结构,使得其他的辅助建材如钢筋水泥等的强度降低,影响整体的结构协调。这样,混凝土的耐用性就会大大降低。不论是对于结构的使用寿命还是长期的耐用程度都有着很不利的影响。所以,要在施工过程中进行温度的控制,采取温度的适当改变和计量,减少裂缝产生,这样能够保证工程质量的安全和安稳,为长远考虑。
混凝土的温度裂缝形成以及研究
在过去,对于大体积的混凝凝土形成的概念很多人都没有专业的认识。所以要想办法防止混凝土开裂的情况,就要采取相应的温度控制。在国际上,工程中都经常会发现有混凝土开裂的情况,严重情况不一,但是都会非常影响工程。如果得不到补救措施,会带来很多的麻烦,并且还会影响工程的质量。现在的建筑物设计越发高大精美。因此负荷也就越来越大。在各个层次上,社会的各个方面如交通、工程、建筑等都是用钢筋混凝土。有些工程,特别是高层建筑中,经常会使用筏板作为基础。这样的话,一点出现裂缝就会引起建筑物的非正常使用,导致渗水甚至更大的隐患,而地下水中的杂质也会渐渐渗入影响材质的刚度,会使得筏板的承受力一再降低。曾有某高层的建筑连续出现贯穿性的大裂缝。地下室渗水,重新浇筑则会费很大的功夫,时间上会耽误很久,并且要耗费更多的材料。对于混凝土的重新浇灌有着格外严格的要求。各种建筑的规格都非常庞大,特别是高墩的桥梁尺寸更是要求更高。所以施工中的裂缝问题就要被注意。基础的部位一定不能出现任何的裂缝。基础的部位一旦出现很多的裂痕,就会影响到日后的安全使用,桥梁的安全存在着很大的未知数,所以这就可能会引起财产和生命的损失。
在实际的使用中,结构物体可能会成受到外力的各种荷载。在承载不了荷载时,就有裂缝出现的可能了。所以应对荷载的能力和温度的相关改变等原因都可能会造成混凝土的裂缝情况。体积混凝土的常见问题主要是质量问题,内部结构产生裂缝是非常复杂的。也是综合性的。混凝土从浇筑到投入使用之间可能会有很多原因引起裂缝。也就是说,可能是水泥的过热引起的。水泥的使用面积往往有混凝土工程的大小来决定的。面积越大则适用的量就越多。混凝土在浇筑的过程之中,水泥放出大量的热。这就能够造成混凝土的温度升高,体积大则散热的情况比较小些、聚集的内部热量不容易散发出来。在升高温度的阶段,混凝土的内部温度相对来说更高一些,所以,根据热胀冷缩我们可以看出内部中心的膨胀要快于表面。中心在约束膨胀,表面之间的点子则相互凝结。但是表面的拉力如果超过了极限,就会产生裂缝。水泥不断散热的过程中热量都是不断向外散发的。体积随着温度在慢慢胀大或者收缩。混凝土的表面和中心是存在着温度差的,因此,就算升温时是同步的,但是依然会出现裂缝。这种情况就是升降温对于混凝土的影响。现在的降温收缩中,如果拉力比较大,就会引起下一次膨胀时的拉力,容易造成裂缝。
大体积混凝土温度裂缝的控制措施
前面我们讨论了很多关于混凝土裂缝的问题,包括裂缝的现状以及各种出现的原因。笔者认为,根据原因来采取一定的控制是完全可能的。所以很多的工程之中都能够给与混凝土一定的散热时间。有的是几天,有的是几个月。混凝土由于温度的变化,拉应力增长速度是比较缓慢的。但是混凝土在硬化方面是比较容易的。
设计控制措施。(1)尽可能选用强度等级低的混凝土将后期的强度充分利用整合,在高层建筑不断出现的当下,混凝土的强度也就被要求更高。出现C40-C50等高强混凝土,设计强度过高,使用水泥的量是非常大的,而且建设工期十分冗长缓慢。混凝土的早龄期,荷载远未达到设计荷载值,可以利用混凝土的60d或god后期强度,这样可以减少混凝土中的水泥用量,以降低混凝土浇筑块体的温度升高(2)进行结构的温度应力分析和设计应该在设计的时候充分考虑各方面的协调作用,比如温度应力的分析情况。将温差最大的位置确定下来,对温度应力和收缩力进行验算,这也是充分的证据,能够作为参考的理论,同时为合理进行分块分层浇筑混凝土提供指导。(3)选择合理的结构形式和分缝分块裂缝很多时候也和结构形式方面有着千丝万缕的联系。大体积混凝土的设计阶段应充分考虑这种情况所带来的影响,尤其是寒冷少用薄壁结构,因为薄壁结构很敏感,温度变化会影响到它的正常稳定。
施工控制措施。再配合比例上要适度,能够将不同的材料最优化配置,强度上面则根据原材料、优化混凝土配合来决定。绝热温升较小、抗拉强度较大、极限拉伸变形能力较大、线膨胀系数较小这些都是混凝土的特征,需要合理分配。
监测措施大体积混凝土温度控制的测试内容
混凝土绝热温升的测试。间接法和直接法是混凝土绝热温升的测试的关键两种方法。间接法是来计算混凝土绝热温升,用水泥的水化热、混凝土比热、水泥用量、混凝土密度。直接法是用混凝土绝热温升实验仪直接测定混凝土绝热温升。直接法测定结果准确,但是实验设备和实验过程比较复杂,这种情况一般都是大型的工程才会用到。其中的一种方法一般就可以满足正常的要求了。
混凝土浇筑温度的监测。在混凝土的浇制监测情况下,要注意温度不能够过于超标,以便控制混凝土浇筑后的温度升高峰值。同时也包括对混凝土搅拌、运输过程中温度的监测和混凝土原材料温度的监测。