在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。如何写一篇有思想、有文采的论文呢?以下是人见人爱的小编分享的数学建模论文优秀7篇,希望能够帮助到大家。
走美杯”是"走进美妙的数学花园"的简称。
"走进美妙的数学花园"中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届"走进美妙的数学花园"中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。 "走进美妙的数学花园"中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过"趣味数学解题技能展示"、"数学建模小论文答辩"、"数学益智游戏"、"团体对抗赛"等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。 著名数学家陈省身先生两次为同学们亲笔题词"数学好玩"和"走进美妙的数学花园",大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从"学数学"到"用数学"过程的转变,从而进一步推动我国数学文化的传播与普及。
"走美"活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
1、活动对象
全国各地小学三年级至初中二年级学生
2、总成绩计算
总成绩=笔试成绩x70%+数学小论文x30%
笔试获奖率:
一等奖5%,二等奖10%,三等奖15%。
3、笔试时间
每年3月上、中旬。
报名截止时间:每年12月底。
走美杯比赛流程
1、全国组委会下发通知,各地组委会开始组织工作
2、学生到当地组委会报名,填写《报名表》
3、各地组委会将报名学生名单全部汇总至全国组委会
4、全国"走进美妙的数学花园"趣味数学解题技能展示初赛(全国统一笔试)
5、学生撰写数学建模小论文
6、全国组委会公布初赛获奖名单并颁发获奖证书
7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。
8、各地按照组委会要求提交数学建模小论文
9、前各地组委会上报参加全国总论坛学生名单
10、全国总论坛和表彰活动
随着社会经济的飞速发展,数学在各种领域中所发挥的作用也越来越显著“高技术实质即数学技术”这一观点广受肯定,有关数学的应用性也备受社会各界关注和重视。为了反映社会及经济发展的需要,我国教育在培养学生时,除了要求其掌握理论知识以外,还要求其能够利用数学思想及方法,及时发现和解决实际中所遇到的各类问题,最终成为同社会及经济发展相适应的应用型人才。而这种利用数学思想分析实际问题,找到数学关系及规律,并将该问题转变为数学问题,构建相应的数学模型,从而解决问题的过程即数学建模。为此,各高校在培养应用型人才时,必须注重加强学生数学建模能力的提升。
一、对高校应用型人才培养的认识
所谓的“应用型人才”,指的是能够利用所学知识及专业技能在社会及经济活动中予以正确实践的专业化人才,也是具备生产一线基础知识及技能,专门从事一线生产的人才。社会对于应用型人才提出了如下要求:不仅具备扎实的基础,宽泛的知识面,较强的应用能力,还具有较高的素质,拥有创新及团队合作意识。其突出特点即知识面宽广、理论基础深厚,可以讲所学知识正确地应用于相关行业领域,同时,能够适应市场经济发展对于人才需求的逐步变化,还具有进一步接受教育与汲取新知识的能力,能够逐步扩展同职业相关的学科能力。
随着我国各大高校扩招力度逐步加大,高等教育正在逐步朝着大众化趋势发展,传统学术型或研究型人才培养模式面临着越来越严峻的挑战,为此,不少发达国家纷纷提出了“培养应用型人才,发展应用型高校”等战略方针。其中,德国早在上个世纪70年代就已经成立了首座应用型科技大学,专门培养和发展应用型人才,并受到了普遍的欢迎,此外,美、英、日也纷纷建立了应用型高校。近些年来,我国各大院在培养应用型人才方面也取得了显著的成果,但由于认识方面存在不足,因此,应用型培养方案及实施过程仍存在诸多问题,培养模式有待进一步完善。经多年探索,结合数学在各个领域中的广泛应用及培养应用型人才的相关要求,借助于数学建模加快高校应用型人才的培养具有十分重要的作用。
二、数学建模对我国高校应用型人才培养的现实作用分析
数学建模需要利用数学知识、语言及方法,对实际问题进行刻画,对于已建立的模型通过推理、证明、计算等,并通过数学软件来求解,对求出的结果同实际问题相似合。具体而言,数学建模对我国高校应用型人才培养的作用表现在如下方面:
(一)有助于团队合作意识的培养
鉴于实际问题往往相对复杂,因此,数学建模时需要搜集大量的数据及信息,并对这些数据进行筛选、分析和处理,建模时通常需要对模型进行假设、建立、求解,并对模型的计算进行设计,利用计算机软件对结果进行分析和检验,将结果同实际问题进行拟合,此过程在短暂的时间内,仅仅依靠一个人的力量是很难完成的,因此,数学建模过程往往需要组建一个团队,要求学生相互之间、师生间以及与社会间进行有效地沟通与合作。因此,数学建模有助于培养学生的团队合作意识,这方面恰恰是社会对于应用型人才培养的最基本要求之一。
(二)有助于创新能力的培养
由于数学建模过程中所涉及的数据多数杂乱无章,因此,要求学生能够有效地进行筛选,去粗取精,经过一系列归纳、整理、加工、提炼与总结,对已知条件进行量化,并对数学关系进行恰当描述,最终组建出相应的数学模型,再通过所学理论及方法对该模型进行求解。为了简化实际问题,必须针对各种因素进行分析,对其中可忽略不计的因素进行判断,这要求学生必须对实际问题具有深刻地理解,明确研究目标及数学背景,以完成这一创造性的过程。此外,数学模型必须对实际问题进行真实、近似地刻画,以求所构建模型能够近乎完美、全面地表达这一实际问题,同时,还要求该模型容易求解,为此,必须对该模型进行不断改善,要求学生可以进入更深的知识层面中,反复产生更多新问题,往复循环,从而实现学生创新能力地逐步提高,满足应用型人才的相关要求。
(三)有助于学生综合素质及能力的培养
数学建模实质上就是综合运用数学知识及方法解决社会实践问题的过程,要求学生除了具备扎实的数学基础及逻辑思维能力以外,还对实际问题的背景具有一定的了解,能够对所具备的各类知识进行融会贯通。数学建模数据庞大而又复杂,因此,处理数据不仅需要分析和综合,还需要抽象、概括、比较、类比等多个过程,经过如此种种的培养,学生应变能力、全面分析及综合思考能力均得到了有效地提高,逐步加强了个人的综合素质及能力培养,这也是成为应用型人才的基本要求。
(四)有助于学生实践操作能力的培养
通常而言,以实际问题为依据所抽象和建立起的数学模型往往十分复杂,因此,数学模型求解过程也很困难,甚至难以求出解析解,即使可以求得也因过于复杂而缺乏足够的应用价值。因此,求解数学模型时需对计算方法进行设计和编写,利用数学软件对该数值解进行计算,要求学生必须具备数学软件及计算机操作及运用能力,经这些过程的锻炼,学生实践动手能力也势必得到了大幅度地提高。此外,数学建模需进行调研,对数据进行广泛搜集和补充,此即培养应用型人才中所格外关注的践性。
(五)全面体现了理论知识的实践应用性
数学建模中存在许多较为典型的案例,例如,“最优化捕鱼策略”,“投资收入及风险”等等,这些都凸显了数学知识强大的应用性。因此,数学建模已经成为数学应用的必经之路,也是将数学和社会实践联系起来的枢纽和桥梁。数学建模需借助于数学知识及方法,对所需解决的问题进行刻画,同时,数学建模还必须对所计算的结果同实际问题相似合,其全面体现了数学理论知识的实践应用性,这方面同社会对于应用型人才培养的要求是相互契合的。
(六)有助于学生自主学习及表达能力的培养
数学建模要求学生自主分析、探索和解决问题,无论是数据收集、补充、完善,还是构建模型,都需要学生主动参与其中,独立解决求解等过程,此外,建模需要全面运用各个专业学科知识,掌握不同的背景资料,科学判断和取舍相关数据,同时,要求自主查询实际问题所涉及到的知识及资料,所有这些都为培养学生的自主学习能力提供了良好的条件。数学建模过程要求采用学生自己的语言对实际问题进行描述和解决,需要深度地沟通和交流,也需要对论文进行写作,因此,这些也提高了他们的语言组织及表达能力。在培养应用型人才时,一个显著特点即要求其具备继续教育及汲取新知识的能力,能够拓展同职业相关的理论专业知识及技能,而数学建模培养了学生的自主学习及语言表达能力,为他们进一步汲取新知识、提高新技能打下了坚实的基础。
可以这样说,经过数学建模的系统化训练,学生收获了探索实际问题的真实体验,提高了信息收集、筛选、分析及运用能力,明白了分享与合作的重要性,锻炼了洞察力、意志力、自主学习、语言表达、专业知识综合运用、分析及解决问题的能力等等,所有这些都满足应用型人才培养目标,同应用型人才培养模式的要求保持一致。因此,数学建模在高校应用型人才培养过程中发挥着巨大的作用。
三、提高大学生数学建模能力的若干建议
(一)设立专门的数学建模课程
高校应设立专门的数学建模课程,要求数学教师必须具备足够的数学建模知识及能力,一方面,能够在课堂教学过程中渗透数学建模思想及应用的重要性;另一方面,可以将数学建模和学科知识理论相结合,游刃有余地引导学生学习和应用数学知识及方法。利用实践问题及典型案例,灵活穿插于课程教学之中,使学生逐步提高数学建模能力,并对数学建模产生浓厚的兴趣。
(二)将应用型人才培养目标与数学建模相结合
要明确学生的主体地位,无论教学还是数学建模竞赛辅导,都必须将课堂主体这一地位让出来,让学生自主进行案例阅读、信息搜集及处理、模型建立及讨论,将大家从被动接受转变为主动探索与思考,提高其学习兴趣,同时,充分发挥其潜力,提高其独立思考及解决问题的能力,逐步提高自身的综合素质,不断朝着应用型人才方向发展。应用型人才培养要体现专业优势,它与数学建模是紧密联系的。在实际培养过程中,要以数学科目为基础,运用数学软件等工具,为数学建模提供必要的支持,并为日后在社会实践中的应用打下良好的基础。
(三)抓好建模教学两大阶段
一是在全校范围内开设建模课程,便于有兴趣的学生学习基础性的建模知识,接触简单的问题及模型,了解数学建模课程的基本方法和内容;二是暑期强化培训阶段,为了更好地应对数学建模竞赛,必须对学生的数学建模能力进行强化锻炼,提高其数学应用能力。在这两个阶段内,教师的作用至关重要,暑期培训主要针对的是有一定专业基础、自主动手能力较强、建模积极性较高的学生。因此,在这个阶段,应选择历届数学建模竞赛题向学生进行讲解,由拥有丰富经验的教师进行专题报告,同时,组织大学生对竞赛进行模拟,由往届学生传授竞赛经验,使学生自主寻找解决问题的方法,提高创新能力。
(四)设立数学建模小组及建模协会
在教学培养中设立数学建模竞争小组,依据现有师资力量,对不同资质、兴趣、特长和专业的教师进行分组。不同类型小组负责指定工作内容,要保证培训、学习和竞赛目标的高效完成。此外,还可设立相应的建模协会,组建对外开放的数学建模实验室,建模协会每年定期在校园内举报建模竞赛,请教师或历届获奖学生进行建模知识讲座,对数学建模进行宣传,培养大学生的学习兴趣,为优秀参赛人员的选拔奠定基础,这样不仅丰富了学生业余文化生活,还提高了其科研水平。
【论文关键词】数学建模创新能力创新思维教学模式
【论文摘要】阐述了数学建模对培养学生创新能力的意义,讨论了如何在数学建模的教学中培养学生的创新思维,探讨了数学建模的教学模式。
1引言
当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。
因此,加强创新精神和创新能力的培养,已是世界各国教育改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重。
一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动。其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模。正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。
2数学建模对培养学生创新能力的意义
高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养。也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。
数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际。数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、科学的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作。数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合。在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等。知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现。实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。
3在数学建模的教学中培养学生的创新思维
创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才。尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用。因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观规律,是研究各种科学技术不可缺少的语言和工具。
而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现。这一过程高度反映了人的创新精神、创造意识和创新能力。
数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法。我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。
数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”。而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维。在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法。
发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举。我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。
逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果。比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini—Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利)。在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型。但若运用逆向思维,从市场需求去预测可能的盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。
4数学建模教学模式的探索
刚踏入大学校门的大一新生,首先接受的是基础数学教育,虽然这一阶段将决定着学生毕业后能否成为创新型人才,但学校要想培养出高质量的创新型人才,基础的数学教育是以知识传授为主体的教与学的过程,多年来的事实证明,这一过程很难肩负对学生创新能力的培养。随着数学建模与数学建模竞赛这一事物的出现,人们很快发现,数学建模教学,尤其是数学建模竞赛的培训是实现这一目标的一条很好的途径。经过多年来的摸索,我们对数学建模的教学模式做了如下探索。
第一,充分再现数学发现的思维过程。学生学习的数学知识,尽管是前人创造性思维的成果,学生作为学习的主体处于再发现的地位,给学生展示数学发现的思维过程,就是引导学生重走数学知识的发现之路,使得学生的再发现得以顺利完成。而这实质上也是对学生创新思维的一种培养过程。然而这一点常常被许多数学教师所忽视,他们只注重数学知识的传授,而隐去了数学知识的发现过程,这就无形地扼制了学生创新思维的发展。而数学建模的教学却能弥补基础数学教学的这一缺陷,能让学生在数学建模的过程中充分体会数学发现的创造性乐趣,从而培养其创新思维。
第二,更新教学形式。传统的单一满堂灌、填鸭式、保姆式的课堂教学形式,容易养成学生对老师的依赖心理,不利于调动学生的主观能动性,更不利于激发学生的创造性思维。因而要想在培养学生的创新能力方面有所突破,必须打破原有的单一教学模式,探索和尝试一些行之有效的新的教学形式。近几年来,我们根据数学建模的具体要求,有意识的尝试了不同于以往传统的教学模式,将多种不同的教学形式进行了优化组合,力求变以教师为中心为以学生为中心,充分调动学生的主观能动性和思维的积极性,培养创新意识和创新能力。
5我校数学建模的教学模式
我校自1994年第一次组队参加全国大学生数学建模竞赛以来,已走过15年的风风雨雨。15年来,在利用数学建模培养学生创新能力方面,我们不断地反思并总结经验和教训。
经过多年来的反复实践和深入探索,我们以培养和提升学生创新能力为目标,以数学建模选修课和数学建模竞赛培训课为载体激发学生的创新欲望,以少数学生影响并带动大多数学生参与数学建模活动体验创新乐趣,作为我们制定数学建模教学大纲、教学计划、确定教学模式的宗旨。下面介绍我校数学建模的教学模式。
数学建模的教学内容分为两部分:
第一部分:数学建模选修课。该课总课时36小时,由4或5位教师每人2或3次课讲完,每位教师每次课主讲一个数学建模方法方面的专题,专题的讲解以先介绍案例再引出理论或先讲述理论再介绍案例的方式进行,每位教师至少布置一道题目,原则上要求每位学生在选修课学完后须上交一份作业,该作业可以是选做教师布置的某一题,也可以自己找题并求解,以论文形式上交。由于时间的限制,选修课中没有介绍论文写作,所以对学生的作业论文并不做严格要求,只注重其内容中是否有闪光的创意之处,并作为后续选拔数学建模竞赛选手的一个重要依据。
第二部分:数学建模竞赛培训课。培训课分三个阶段进行。第一阶段是软件和数学建模方法的培训。软件培训主要介绍的MatLab、Spss、Lingo的使用和基本操作;数学建模方法包括:最优化方法建模、微分方程建模、数理统计方法建模、层次分析法建模、网络图的方法建模、神经网络建模、模糊数学建模、遗传算法建模、概率仿真建模。第二阶段是专题培训。首先从历年全国大学生数学建模竞赛题目中选出9个分为3组,然后由3位多年来的资深指导教师讲解如何审题、破题;如何查找资料、整理资料;如何分析问题、建立模型;如何分析并寻找合适的算法并对模型进行求解;如何对模型求解结果进行分析并加以修改或改进;最后告诉学生如何对自己所做的工作加以总结并写成一篇规范的科技论文。第三阶段是模拟竞赛。给定三个题目,由各参选队任选一题,要求按全国大学生数学建模竞赛的所有规则进行模拟竞赛。三天后各队提交一篇论文,最后选定其中最好的10个队参加全国大学生数学建模竞赛。
[1]谢云荪,成孝予,钟守铭。转变教育思想提高数学素质培养创造性人才[J]。工科数学,1997,13(6):132—136。
[2]傅英定,成孝予,彭年斌等。转变教育观念培养学生创造性思维能力的研究与实践。电子高等教育的理论与实践[M]。成都:电子科技大学出版社,2000:181—184。
[3]安正玉,邓正隆。本科教学应突出创造能力的培养[J]。高等科教管理,1997(2):43—46。
[4]李心灿。在高等数学的教学中培养学生创造性思维的一些实践与思考[J]。工科数学,1999,15(6):35—41。
[5]韩中庚等。数学建模竞赛—获奖论文精选与点评[M]。北京:科学出版社2007:201—216。
[6]张仁丽,李捷飞,邱霆。MS网点的合理布局[J]。工程数学学报2004,21(7)29—35。
论文关键词:数学建模数学应用意识数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为
,从而得出错误结论。不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
论文格式要求
一、页面布局说明:页面大小采用标准A4纸张大小,(210mm×297mm),页边距上、下、左、右各25mm。
二、题名
按照已发表论文如实填写。
三、作者
中国作者姓名的汉语拼音采用如下写法:姓前名后,中间为空格。姓氏的全部字母和名的第一个字母大写,复姓连写,姓名均不缩写。示例:ZHANG Aixin(张爱新),ZHENG Ting(郑挺), ZHUGE Hua(诸葛华)。外国作者的姓名写法遵从国际惯例。多个作者之间用空格隔开。作者单位(中文,英文) 加圆括号置于署名下方。包括单位学校、学院、邮编3项。
四、内容摘要
要求:英文摘要应与中文摘要相对应。中文摘要前加“摘 要:”作为标识;英文摘要前加“Abstract:”作为标识。
五、关键词
关键词以分号隔开。中、英文关键词应一一对应。中文关键词前冠以“关键词:” 作为标识,英文关键词前冠以“Key words:”作为标识。例如:
关键词:汽油机;燃爆控制;电子点火;模糊逻辑
Key words:gasoline engines; knock control; electronic ignition; fuzzy logic
六、参考文献
(一)文献类型及载体类型标识
参考文献类型及其标识:
内容需要下载文档才能查看
1、 每一引文对应一个指示序号,以数字加方括号标示,手动插入,设定上标。如:[1]、
[2]、?。
(三)文后参考文献表的编排格式
参考文献按引文在正文中出现的先后次序列表于文后;表上以“参考文献:”(左顶格)作为标识;参考文献条目的序号左顶格,并用数字加方括号标示,如[1]、[2]、?,以与正文中的指示序号一致。正文中的指示序号通常在与引文对应的标点符号的右上角。每一参考文献条目中的标点符号全部在英文状态下输入。各类参考文献条目的编排格式及示例如下:
1.专著
[序号] 主要责任者。 文献题名[文献类型标识]。 出版地: 出版者, 出版年。 起止页码(任选)。 如:
[1] 刘国钧, 陈绍业, 王凤翥。 图书馆目录[M]。 北京: 高等教育出版社, 1957. 15-18.
2.期刊文章
[序号] 主要责任者。 文献题名[J]。 刊名, 年, 卷(期): 起止页码。 如:
[3] 何龄修。 读顾城《南明史》[J]。 中国史研究, 1998, (3): 167-173.
3.论文集和以书代刊的连续出版物中的析出文献
[序号] 析出文献主要责任者。 析出文献题名[A]。 原文献主要责任者(任选)。 原文献题名 1
[C]。 出版地: 出版者, 出版年。 析出文献起止页码。 如:
[5] 钟文发。 非线性规划在可燃毒物配置中的应用[A]。 赵玮。 运筹学的理论与应用——中国运筹学会第五届大会论文集[C]。 西安: 西安电子科技大学出版社, 1996. 468-471.
4.报纸文章
[序号] 主要责任者。 文献题名[N]。 报纸名, 出版日期(版次)。 如:
[7] 谢希德。 创造学习的新思路[N]。 人民日报, 1998-12-25 (10)。
5.国际标准、国家标准
[序号] 标准编号,标准名称[S]。 如:
[9] GB/T16159-1996, 汉语拼音正词法基本规则[S]。
6.专利
[序号] 专利所有者。 专利题名[P]。 专利国别: 专利号, 出版日期。 如:
7.电子文献
[序号] 主要责任者。 电子文献题名[电子文献及载体类型标识]。 电子文献的出处或可获得地址, 引用日期(任选)。 如:
[13]王明亮。关于中国学术期刊标准化数据库系统工程的进展[EB/OL]。 /pub/wml.txt/980810-2.html, 1998-10-04. (“[EB/OL]”意为网上公告)
[12] 万锦坤。 中国大学学报论文文摘(1983-1993)。 英文版[DB/CD]。 北京: 中国大百科全书出版社,1996. (“[DB/CD]”意为光盘数据库,另较常用的[DB/OL]意为网上数据库)
8.古籍:
[序号] [朝代]主要责任者。 文献题名[文献类型标识]。 出版地: 出版者, 出版年。(任选)起止页码。
[3] [清] 沈家本。 沈寄簃先生遗书(甲编)[M]。43.
9.译作:
[序号] [国别]主要责任者。 文献题名[文献类型标识]。 译者。 出版地: 出版者, 出版年。 起止页码。
[5] [英]詹宁斯, 瓦茨。 奥本海国际法(第九版) [M]。 王铁崖, 陈公绰, 汤宗舜, 周仁译(或王铁崖等译)。 北京: 中国大百科全书出版社, 1995. 78.
10、 外文论文类参考文献格式为:
[序号] 主要责任者。 文献题名[文献类型标识]。刊名(斜体)。 年, 卷(期): 起止页码。
[3] Lisa A. Barbet & John Michael. Money Laundering: An International Challenge [J]。 American Journal of International Law. 1995, (62): 162-163.
【内容摘要】数学学科是初中教育体系中的关键课程,具有较强的逻辑思维特点,在新课改背景下对学生提出更高的学习要求,应转变数学知识的认知程度,增强自身的逻辑思维能力。不少初中数学教师为实现这一教学目标,都在积极尝试应用建模教学法,并取得不错的效果。笔者通过对新课改下初中数学建模教学的重点探究和分析,制定一系列有效的教学策略。
【关键词】新课改;初中数学;建模教学
近年来,我国教育新课改不断发展与进步,对初中数学的教学要求也不断提高,研究有效提高初中数学课堂教学的策略至关重要。初中数学教学知识具有抽象化的特点,内容较为枯燥,传统的教师讲解教学内容、学生接受知识灌输的教学模式已不能满足现下初中生学习初中数学的发展需要,必须改进与完善有效的教学策略。数学建模作为数学知识在生活实践的具体应用,在新课改下初中数学课程教学应用建模教学已是大势所趋,是改善教学质量的有效途径。为此,在初中数学建模教学中,教师将人类生产生活中的实际案例转变为数学问题,引领学生通过建立数学模型解决问题,激发他们的学习兴趣,而且在建模过程中可培养学生的实践能力和创新精神,教学效果显著提升。
一、借助数学建模降低知识难度
在初中数学建模教学中,教师需以教学对象的心理特点、认知基础和年龄特点为突破口,先从低起点的数学模型着手,并结合新课改的教学标准适当降低知识难度,让学生易于掌握,促使他们整体参与学习。所以,初中数学教师在具体的建模教学中,选择和使用的素材需贴近学生的实际生活,符合他们的认知能力和学习经验。利用这些生活现象引领学生建立数学模型,对于他们来说较为熟悉更加易于接受与掌握,从而提升教学效率。在这里以“用一次函数解决问题”教学为例,由于学生已经学习过一次函数的概念、性质、图像和特征等知识,知道一次函数的应用十分广泛。教师可结合实际生活中的案例设计题目:某市出租车收费标准:不超过2千米计费为8元,2千米后按2.5元/千米计费,求:车费y(元)与路程x(千米)之间的函数表达式?这对于初中生来说在现实生活中较为熟悉,利用所学知识结合生活案例建立数学模型,并列出函数式:y=8+2.5(x-2)(x≥2)。不过需要注意的是,在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,应根据自变量不同的取值范围,分别列出不同的函数表达式。
二、初中数学建模突出趣味教学
初中的心理特征与年龄特点决定喜欢接受趣味教学,能够亲手参与实践具有活动性质,且感性思维多于理性思维的教学模式。在初中数学建模教学中,教师需以学生喜闻乐见的方式讲授知识,从他们的兴趣爱好着手,提升课堂教学的趣味性,使其积极参与学习,促进学生建模能力的提高。而且初中数学教材中有不少有趣的现实情境素材,教师可以此为依托展开建模教学,提高学生的学习热情和兴趣,并增强他们解决问题的能力。比如,在学习“解一元一次方程”时,教师为突出建模教学的趣味性,可利用现实生活的行程问题展开教学,借助实例帮助学生学习知识,并练习和掌握一元一次方程的解法。教师可举例:甲、乙两地相距480千米,一辆公共汽车与一辆轿车分别从甲、乙两地同时出发沿公路相向而行,其中公共汽车的平均时速为40千米,轿车的平均时速为80千米,那么它们出发后多少小时在途中相遇?学生阅读完题目之后,利用学习用具进行建模,并模拟动画演示,设两车出发x小时之后相遇,根据题意列出算式:40x+80x=480,从而得出x=4。如此,不仅可让课堂教学突出趣味性,还能够培养学生的建模能力。
三、初中数学建模注重思想方法
数学建模属于一种思想方法,在新课改下初中数学课程教学中,教师不仅要帮助学生掌握数学理论知识,还应传授他们学习方法,使其掌握学习数学知识的技巧。所以,建模教学应注重思想方法的传授,让学生真正掌握建模技巧、形成建模能力。因此,初中数学教师在兼顾知识教学的同时,应注重对学生能力的培养,增强他们的建模意识和能力,在学习过程中善于使用建模思想,并运用建模解决实际问题,真正实现学以致用。例如,教师可将二次函数与矩形相关知识结合在一起,设计题目:用长度为56米的铁丝网围成一个矩形养兔场,设矩形的一个边长为x米,面积为y平方米,那么当x为何值时,y的值最大?围成养兔场的最大面积是多少?然后,教师可指导学生利用建模思想解题,根据题意矩形的一边为x米,则其邻边为(56÷2-x)米,即为(28-x)米,得出函数式y=x(28-x)=-(x-14)2+196,因-1<0,当y=196时,x=14时,所围的矩形面积最大。这道题目主要考察学生利用二次函数解决矩形面积最值的问题,教师应引领他们主动使用建模思想来分析和解决问题,培养其动手能力掌握建模技巧。
四、总结
在初中数学教学活动中引入建模教学,是培养学生学习兴趣和创造性思维能力的有效举措,教师需充分发挥建模教学的优势和作用,让学生知道建模思想的重要性,进而发展他们的思维能力、学习能力和应用能力。
本文从数学建模竞赛的动员组织情况、具体竞赛过程、获奖情况和今后的工作方向四个方面对我校数学建模竞赛活动进行了一些探索与实践。
教育国的核心是培养创新型人才。全国大学生数学建模竞赛是高校中参加人数最多、影响最广泛的学科竞赛之一,此项赛事由教育部高教司和中国工业与应用数学学会联合主办,迄今已举办21届,它对创新型人才的培养起到了不可估量的作用,未来也将日益显现它这方面的作用。长春理工大学从1996年开始参赛,成绩斐然,已累计获得国家级奖40余项,年均3项,20xx年我校共有51队153人参加全国赛,是吉林省除吉林大学外参赛队数最多的高校。其中9队获得国家一等奖,11队获得省一等奖,21队获省二等奖,8队获省三等奖,获奖率位居吉林省参赛高校前列。这主要归益于以下几方面:
一、赛前的动员及组织情况
赛前周密的宣传组织工作是本次大赛取得成功关键因素之一。我校一直把组织数模竞赛作为一项重要的教学活动纳入了全年工作日程,专门成立了数学建模竞赛领导小组,协调、督促、组织数学建模竞赛各项准备活动。通过海报、课堂、网站等多种形式宣传开展数学建模活动,鼓励各学院学生踊跃报名。
二、竞赛具体过程管理和实施情况
由专人统筹负责竞赛工作。从每年四、五月份开始采取校级、省级竞赛层层选拔的制度,把最优秀、最渴望参赛、最有能力的队员吸纳进来组成国家赛参赛队伍。对于国赛队员将认真组织赛前培训和辅导工作。
三、本年度竞赛获奖情况分析
今年我校共有51个队参加了全国大学生数学建模竞赛,获得国家奖9项,省级奖40项,获奖率几近100%。
四、竞赛过程中存在的问题及拟解决的措施
1.竞赛过程中存在的主要问题还是数学软件使用和写作两方面,在今后的培训和其他级竞赛中应加强这两方面的训练。另外宣传力度也有待加强。
2.今年全国赛我校51队中有35支代表队选择了A题,此题是交通占道问题对城市交通能力的影响问题,实质是利用数学方法建立模型,需要学生有较好的微积分、常微分方程、运筹学等课程基础,正是由于我校平时对大一大二的数学基础课的精心讲解和严格要求才使得我校学生有信心也有能力作出此题并取得了如此好的成绩,今后我们将继续加强数学基础科的教学工作,同时注意在教学中渗透数学建模的'思想、方法,培养学生参加建模的兴趣。并希望以数学建模工作为平台,通过多种形式大力开展数学建模教学与研究活动,以赛促学、以赛促教,以竞赛推动教学研究,以教学研究提高竞赛质量。B题选择队数相对较少,原因主要是该题是关于碎纸文字的拼接复原模型,需要队员熟悉算法,精于编程,大多数同学不敢碰此题原因就是编程能力过弱。
3.国家赛获奖结果反映出理学院、计算机科学与技术学院、光电工程学院、电子信息工程学院的学生获奖人数占到98%,创新实验班参赛人数并不多,仅占总人数的33%,特别是计算机科学与技术学院的创新实验班仅有8人参加,不及总人数的6%。
五、对学校的建议和意见
1.认真组织各级数学建模竞赛,建议提前到3月中旬组织校数学建模竞赛,改进选拔方式,通过评审、教师推荐、答辩精选国赛参赛队员,加大对数学软件、算法的培训;5月下旬到7月中旬,利用周六对选拔出的学生进行实战培训,建议全体队员模拟实战,完成3-4道往年的竞赛题目,并提交论文,指定专门教师负责指导。
2.进一步宣传发动,动员更多的学生参加数学建模竞赛,特别是加大对计算机学院的宣传力度,争取更多的计算机科学与技术学院,特别是动员计算机科学与技术学院创新实验班的同学参赛。
3.继续举办大学生数学建模培训,切磋技艺,交流经验,提高水平。组织教师精讲获国家奖的。同时每年选派2至3名指导教师参加建模交流会议及理论学习,也让更多教师参与数学建模类教改科研项目,将数学建模作为一件可持续发展的项目开展。
4.抓好数学建模基地建设,定期做讲座和研讨,打造一支高素质建模指导教师队伍。
数学建模竞赛是一项长期、可持续、与实践结合密切、应用前景极好的学科竞赛,需要我们不断探索和实践,不断摸索出一套适合我校竞赛组织活动的规范化体系。