《圆的面积》教案最新9篇

作为一位优秀的人民教师,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。那么问题来了,教学设计应该怎么写?下面是小编辛苦为大家带来的《圆的面积》教案最新9篇,希望大家可以喜欢并分享出去。

《圆的面积》的教学设计 篇1

一、内容简介及设计理念

本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。

本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。

第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。

二、教学目标:

1、经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆的面积计算公式计算圆的面积。

3、在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。

三、教学重点和难点:

圆的面积计算公式的推导。

四、教学准备:

圆形纸片、剪刀、多媒体课件等。

五、教学过程:

教学过程教师活动学生活动

一、谈话引入,揭示课题

二、探究新知。

1、第一次探究,明确思路,体会“转化”的数学思想方法

2、第二次探究,明确方法,体验“极限思想”

3、第三次探究,深化思维,推导公式。

4、解决问题

5、小结

三、知识应用(出示一个圆)大家看,这是什么图形?

师:你已经掌握圆的哪些知识?

师:关于圆你还想探讨什么?

(板书课题:圆的面积。)

师:谁能摸一摸这个圆片的面积。

师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?

师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。

在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。

师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。

师:噢,你想把圆转化成我们学过的三角形来求它的面积。

师:谁还有不同的方法?

师:这像我们学过的什么图形?

师:你想把圆转化成平行四边形来求它的面积,是不是?

师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)

师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。

师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。

师:为什么要折这么多份?

师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?

师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)

师:你发现了什么?

师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?

师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。

师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?

师:能让拼成的图形更接近平行四边形吗?

师:哪个小组分的份数更多?

(教师让另一组展示自己平均分成16份后拼成的图形。)

师:和前两次拼成的图形比,又有什么变化?

师:如果要让拼成的图形比它还接近平行四边形,怎么办?

师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)

师:把这圆平均分了64份,看拼成新的图形呢?

圆的面积教案 篇2

学材分析

教学重点:

面积计算公式的正确运用。

教学难点:

面积公式的推导过程。

学情分析

学生对圆面积公式的推导过程理解有一定的难度。

学习目标

1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2、会用圆面积的计算公式,正确计算圆的面积。

导学策略

导练法、迁移法、例证法

教学准备

圆的面积模型、圆规、投影仪、投影片

教师活动

学生活动

一.引入

1、什么叫做圆面积?

2、出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

3、引出课题。

二.推导

1、问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

2、师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

3、教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

4、分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

板书:图形面积=等腰三角形面积n=底高2n=Cr2n

=2rn

圆的面积=r2

边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

5、在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

三.巩固

试一试。

四.总结

五.作业

学生口答

师生共同操作

师生共同操作

教学反思

已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

《圆的面积》教学设计 篇3

教学目标:

知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

教学过程:

一、创设情境,提出问题。

1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

2、 这个圆形的面积指的是哪部分呢?

3、 今天这节课我们就来学习圆的面积。(板书:圆的面积)

二、探究思考,解决问题。

1、请大家估计半径为5米的圆面积大约是多大?

2、用数方格的方法求圆面积大小

①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

②指明反馈估算结果,并说明估算方法及依据。

3、在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

三、探索规律

1、大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

2、那么圆形的面积可由什么图形面积得来呢?

3、拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

4、同学们操作,教师巡视。

5、。大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

6、你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

7用字母怎么表示圆面积公式呢?

四、应用圆面积公式

1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

2、第18页第1题

学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

3、 第18页第2题

让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

板书设计:

圆的面积

平行四边形面积=底×高,

圆形面积公式=圆周长的1/2×半径

圆形面积公式=圆周率圆×半径2

《圆的面积》教学设计 篇4

教学目标:

1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:

掌握圆的面积计算公式,能够正确地计算圆的面积。

教学难点:

理解圆的面积计算公式的推导。

教学过程:

一、回忆旧知、揭示课题

1、谈话引入

前些日子我们已经研究了圆,今天咱们继续研究圆。

2、画圆

首先请同学们拿出你们的圆规在练习本上画一个圆。

3、比较圆的大小

请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

4、揭示课题

我们把圆所占平面的大小叫做圆的面积。(出示课题)

二、动手操作,探索新知

1、确定策略,体会转化

(1)明确研究问题

师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

(2)体会转化

怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)

其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?

预设:

学生回忆平行四边形、三角形、梯形的面积推导方法。

当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

小结:

你们有没有发现这些方法都有一个共同点?

(3)确定策略

那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)

如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的`图形吗?那怎么办呢?(割补法)怎么剪呢?

①引导学生说出沿着直径或半径,把圆进行平均分;

②师示范4等份、8等份的剪法和拼法;

2、明确方法,体验极限

(1)学生动手操作16等份的拼法;

(2)比较每一次所拼图形的变化;

(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

3、深化思维,推导公式

(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

(2)交流发现,电脑演示圆周长和长,半径和宽的关系。

(3)多让几个学生交流转化后的长方形和原来圆之间的联系。

(4)根据长方形的面积公式推导圆的面积计算公式。

三、运用公式,解决问题

1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

2、判断对错:

(1)直径是2厘米的圆,它的面积是12.56平方厘米。()

(2)两个圆的周长相等,面积也一定相等。()

(3)圆的半径越大,圆所占的面积也越大。()

(4)圆的半径扩大3倍,它的面积扩大6倍。()

3、知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

四、总结新知,深化拓展

1、小结:

通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

2、拓展

在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

《圆的面积》教学设计 篇5

圆的面积教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。          ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。          ⒊渗透转化的数学思想。教学重点:圆面积的含义。圆面积的推导过程。教学难点:圆面积的推导过程。教学过程:一、复习。1、已知r,周长的一半怎样求?   2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这些图形的面积计算公式。       s=ab       s=a2      s= ah       s= ah    s= (a+b)h二、新课。1、什么是圆的面积?(出示纸片圆让生摸一摸)    圆所占平面大小叫做圆的面积。2、推导圆的面积公式。(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?若分的分数越多,这个图形越接近长方形。(1)找:找出拼出的图形与圆的周长和半径有什么关系?圆的半径 = 长方形的宽   圆的周长的一半 = 长方形的长    长方形面积 = 长 ×宽

所以:   圆的面积 = 圆的周长的一半×圆的半径

s = πr × r               s圆 = πr×r = πr2  3、你还能用其他方法推算出圆的面积公式吗?(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积 是这个圆面积的 。这个三角形底是圆周长的 ,三角形的高是圆的半径。因为:三角形面积= ×底×高  162π圆面积= ×            = ×       ·r×r           =πr2(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的 ,平行四边形的底是 ,三角形的高即一个半径,因为:平行四边形面积=底×高162π         圆面积 = ×r÷                      =       ×r×8                     =πr2还可以取3份、4份等,同学们可以一一推算。三、运用知识解决实际问题。1、例1    一个圆的直径是20m,它的面积是多少平方米?已知:d=20厘米  求:s=?       r=d÷2      20÷2=10(m)s=лr2               3.14×102                           =3.14×100              =314(平方厘米)2、根据下面所给的条件,求圆的面积。r=5cm       d =0.8dm       3、解答下列各题。(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?四、作业。     课本p70第1、5题。

《圆的面积》教学设计 篇6

教学内容:

义务教育课程标准实验教科书第十一册P67—68

教学目标:

1、认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点:

掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。

学具准备:

相应课件;圆的面积演示教具

教学过程:

一、创设情境,导入新课

出示教材67页的情境图。

师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)

生1:我发现图上有5个工人在铺草坪。

生2:我发现花坛是个圆形。

师:哦,是个圆形。还有没有?请仔细观察。

生:我发现一个工人叔叔提出了一个问题。

师:这个问题是什么?

生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”

师:你们能帮他解决这个问题吗?

师:求圆形草坪的占地面积也就是求圆的什么?

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、游戏激趣,理解圆面积的概念

师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)

生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。师:圆所占平面的大小叫做圆的面积

(板书:圆所占平面的大小叫做圆的面积)

师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)

[设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]

三、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

3、学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的发生了变化,但是它们的不变?

②转化后长方形的长相当于圆的,宽相当于圆的?③你能从计算长方形的`面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

4、公式运用,巩固新知。

师:现在大家懂得计算圆的面积了吗?我们来试试看。

四、应用公式,解决生活中的实际问题

师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。

师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

五、练习反馈,扩展提高

1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?

六、全课总结

同学们,这节课我们学习了哪些知识?你有什么收获?

七、板书设计

圆的面积

圆所占平面的大小叫做圆的面积

长方形面积=长×宽

=半径

S=πr×r

=πr2

《圆的面积》教学设计 篇7

教学目标:

1知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣,培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

3情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

教学难点:理解圆的面积公式的推导过程。

教学准备:课件、圆形白纸、剪刀。

教学过程

一、创设情景,引入新课

1、出示主题情景图:

①从图中你获得哪些数学信息?

②提问:“这个圆形草坪的占地面积是多少平方米?”“占地面积”指什么?

2、说一说:什么叫圆的面积?

3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

二、合作交流,探索新知

1、回顾旧知:

回顾以前学过的平面图形面积公式是如何推导出来的?

指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

3、合作探究:

(1)猜想

(2)动手操作,验证猜想。

(3)汇报交流,展示成果(分层展示学生研究成果)。

【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

4、借助网络画板制作的动态课件展示圆面积的推导过程。

展示不同的等份数拼成不同的平行四边形,感受极限的思想。

【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

5、推导圆面积公式。

①比较转化后的图形与圆,你发现了什么?

②全班交流,根据学生叙述板书:

长方形面积=长×宽

圆的面积=圆周长的一半×半径

=Лr×r

=Лr

6、小结:圆的面积计算公式:S=Лr

【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

7、知识应用、内化提高

(1)、求下列圆的面积。(只列式不计算)

r=3cm

(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

(1)认真读题,理解题意。

(2)你认为怎样解决这个问题?

(3)学生尝试独立计算。

(4)汇报解答过程及结果,集体评价。

【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

四.联系生活、拓展延伸

1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

2、把一个周长为1884cm的长方形改围成一个圆,围成圆的面积是多少?

3、求下列圆的周长和面积。

r=2cm

4、求半圆的面积。

r=4cm

【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

5、回顾整理,全课总结

今天我们学到了哪些新知识?你有哪些收获?

【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

《圆的面积》的教学设计 篇8

设计过程:

一、教材分析

教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。

二、学情分析

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

基于以上的教材和学情分析,我制定了以下的教学目标:

三、教学目标

1、认知目标:

提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。

2、能力目标:

培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。

3、情感目标:

通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。

教学重点:

正确掌握圆面积的计算公式。

教学难点:

圆面积计算公式的推导过程。

四、教学过程

(一)创设问题情境,激发学生学习兴趣

1、感知圆的面积:(课件出示一大一小的圆)

师:圆的大小是由什么决定的?(板书:由半径决定)

2、感知圆的面积有大有小:

(选择两个面积不同的圆)

师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。

师:那谁能说说什么叫做圆的面积?

(揭示:圆所占平面的大小叫做圆的面积。)

[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。

(二)学生合作探索,交流操作经验

1、初步感悟:

(1)课件出示:书103例7图。

师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?

原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。

通过数圆的面积,得到整圆的面积,然后把表格填完整。

学生填表、计算,汇报

小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。

2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。

师:那么,这节课我们就来共同找出求圆面积的方法。

3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)

[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。

师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)

[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。

4、师:刚才我们已经复习了以前我们利用平移、割、补等方法推导平行四边形面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?

你想采用什么方法把圆转化成学过的图形?

[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。

师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。

师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)

[设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。

(三)利用课件演示,呈现经验总结

[注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。

《圆的面积》教学设计 篇9

【教学内容】:

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

【教学目标】:

知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

【教具准备】:

多媒体课件,圆片等。

【教学方法】:自主探究法

【教学过程】:

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

3、圆的面积计算公式的推导。

小组合作讨论以下问题:

a、拼成的近似长方形的面积和圆的面积有什么关系?

b、长方形的长与圆的周长有什么关系?

c、长方形的宽与圆的半径有什么关系?

d、你能找出圆的面积计算方法吗?

长方形的面积=长×宽,

所以圆的面积=()×()=()

学生在小组内积极讨论,探究、分析,并将结果汇报。

长方形的长是圆周长的一半,长方形的宽是半径(r)

因为长方形的面积=长×宽

所以圆的面积=∏r×r=r2

齐读公式S=∏r2强调r2=r×r(表示2个r相乘)

同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式。

三、巩固运用、形成技能

1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

(1)课件出示例1

(2)学生独立审题

(3)教师板演解答过程。

3、求下面圆的面积r=3md=5cm

①学生独立完成

②集体核对时,强调要先算平方再算乘法。

4、判断题(课件出示)

5、拓展练习:机动题

小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

四、课堂总结、深化认知:这节课,你有哪些收获?

五、作业:练习十六2.4题。

附:板书

圆的面积

长方形面积=长×宽

↓↓↓

圆的面积=圆周长的一半×半径

=∏r×r

=∏r2

例1:r:20÷2=10(m)

S:3.14×102=314(m2)

答:它的面积是314m2。

一键复制全文保存为WORD
相关文章