北师大版乘法分配律教学设计(优秀12篇)

作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写才好呢?这里是细心的小编给家人们收集整理的12篇乘法分配律教案的相关文章,希望能够帮助到大家。

乘法分配律教案 篇1

(一)知识教学点

1、使学生理解乘法分配律的意义。

2、掌握乘法分配律的应用。

(二)能力训练点

通过观察、分析、比较,培养学生的分析、推理和概括能力。

(三)德育渗进点

通过乘法分配律的应用,激发学生的学习兴趣。

(四)羹育渗遇点

使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验

(D识迁移类推,通过合作学习,学会知识。

1、教学重点:乘法分配律的意义及应用。

2、教学难点:乘法分配律的反应用。

小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。

(一)锚垫孕伏

1、口算:(卡片)

25× 17×4 125×24

引导学生说一说运用了什么运算定律,这样计算有什么好处?

2、先口算,再把得数相同的两个算式用等号连接起来。(投影片)

(6+4)×5 6×4+4×5

(二)探究新知

1、导人新课:

前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)

2、教学例5:

(1)出示例5:

(2)引导学生观察、讨论、交流。

(3)教师引导学生观察两种算式,发现了什么?使学生懂得:

①两个算式相等。

②两个算式可用等号连接。

学生答,教师板书:(18+7)×6=150

18×6+7×6二150

(]8+7)×6二18×6+7×6 、

(4)教师出示:20×(15+9)

20× 15+20×9=480

20×(15+9)二20×15+20×9

组织学生分组讨论,使学生明确:每组中算式所表示的意义。

反馈练习:按题目要求,请你说出一个等式。(投影出示)

(——+——)×——=——×——+——×——

学生答,教师填写投影。

(通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐达到水到渠成。)教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘数和乘数的位置。)

②两个加数分别同一个数相乘再把两个积相加。

③等号左右两边两个算式相等。

3、概括定律:

通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。

4、反馈练习:

横线上能填几?为什么?

(32+35)×4二——×4+——×4

(62+12)×3=——×——+——×——

教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)

5、我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学们观察我们练习的乘法结合律,在运算上有什么特点?

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便。

6、教学例7:

(1)出示例7:

102×43

=(100+2)×43

=4300+86

=4386

想:把102看成(100+2),再用43分别去乘100和2,可以用口算

用了乘法结合律。

教师说明:熟练后第二步可以不写,画上虚线。

(2)出示9×37+9×63

①组织同学讨论。

②组织同学阅读教科书第65页。

③启发学生明白了什么?

(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学

生知识迁移类推,通过合作学习,能够自己学会新知。)

(三)巩固发晨

1、练习十四第1题。

2、在横线上填上适当的数。

(”(24+8)×125=一×一+一×一

(2)25×(20+4)=25×——+25×——

(3)45×9+55×9=(——+——)×——

(4)8×27+73×8=8×(——+——)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相

同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

3、把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×5 24×5+24×8

(3)20×(17+15)20×17+20×15

(4)(40+28)×5 40×5+28

(5)(10×125)×8 — 10×8+125× 8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4、选择题:

(1)28×(42十29)与下面的()相等

①28×42+28×29 ②(28+42)×(28+29)

(2)与6×8—6×8相等的式子是()

(3)与(10+8+9)×5相等的式子是()

①10×5+8×5+9×5 ②10+5×8+5×9

5、练习十四第4题,投影出示。

6,分组计算练习十四第3题。

(四)课堂小结

③28×42×29

今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分

别与一个数相乘,再把两个积相加。

《乘法分配律》优秀公开课教案 篇2

教学目标:

1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

2、能够运用乘法分配律进行简便运算。

3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

教学重、难点:

理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

教学过程:

一、情境导入:

出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

二、探究发现,归纳总结。

(一)借助图形,感知模型。

1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

请把想象的图画出来。交流学生作品后,出示

60米 30米

20米 《乘法分配律》教学设计

原面积 增加的部分

2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米 ( )米

20米 《乘法分配律》教学设计

原面积 增加的部分

刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

2、交流:你想增加几米?怎样算?结论是什么?

师相机板书。

引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

( )米 ( )米

( )米《乘法分配律》教学设计

原面积 增加的部分

4、交流:你是怎么猜测和验证的?结论是什么?

教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c

讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

(三)借助图形,逆用模型。

1、出示计算题:

(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

2、46×25+54×25、98×20+98×80

请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

(四)借助图形,拓展模型。

1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

你们能解决这个问题吗?试着算一算。

反馈交流:说说你们是怎么解决的?

我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?

谁能用字母来表示这个新规律呢?

师板书:(a-b)×c=a×c-b×c

三、科学练习:

乘法分配律教案 篇3

教学目标

1、引导学生探究和理解乘法分配律。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:借助实际问题体会、认识乘法乘法律。

教学难点:用乘法交换律和结合律算式。

预设过程

一、引入

1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

2、理解题意

二、探新

1、学生独自列式

2、小组交流想法

3、汇报:根据学生的回答板书

25×(4+9)=25×4+25×9=325

25×(4+9)=25×4+25×9

指名学生说出每一步表示的意义

(4+9)×25=4×25+9×25=325

(4+9)×25=4×25+9×25

4、改题:如果改为买45副,你又可以怎样算?

45×(4+9)=45×4+45×9

(4+9)×45=4×45+9×45

5、观察:请你们仔细观察上面这几题,

6、你们发现了什么?

相同点:左边都是两个数的和与一个数相乘,

右边都是两个数和这个数相乘再相加。

不同点:算式左边和右边有什么不同?

联系:算式左边和算式右边有什么联系?

6、举例:这样的算式你能再举出一些吗?

7、概括:你们能把上面的规律概括成一句话吗?

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

你能用字母表示吗?(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

8、质疑:还有什么问题?

三、巩固

1、做一做

判断并说明理由

2、第5题:下面哪些算式运用了乘法分配律

3、第6题

103×1220×5524×20525×24

四、:你们还有什么问题?

五、布置作业:

1、口算

2、作业本

3、寻找生活中乘法分配律的例子。

板书设计

作业设计:

课堂作业本P15

口算训练P16

教学反思

课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

生2:是呀,一个数好像是公共财产,都是它们共有的。

这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

《乘法分配律》优秀公开课教案 篇4

教学目的:

1 、使学生理解掌握乘法分配律的意义,概括出这个定律。

2、培养学生观察、抽象概括以及口头表达的能力。

3、鼓励学生大胆尝试,并渗透通过现象看本质和变中不变的思想

教学重点:

理解乘法分配律的意义,并归纳出定律

教学难点:

抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。

教具准备:

实物投影仪、学具卡,多媒体课件。

教学过程:

一、设疑引入

1、口算

A B

(2+8)5 25+85

(2+10)3 23+103

(9+11)6 96+116

(12+18)5 125+125

(出现第四组口算题时,后一道先不出示,让学生猜一猜可能是怎样的口算题。学生猜后再公布答案。)

教师提出疑问:你们真厉害,一下子就猜对了。这里面有什么秘密吗?

2、我们观察这两组口算题的结果怎样?可以用什么符号连接?等号左右的算式一样吗?

3、教师设疑:为什么上面算式不同而结果相等呢?结果相等的两个算式有什么联系?刚才你们有是根据什么秘密猜出了最后一道口算的?这节课我们一起研究这个问题。

二、指导探索:

1、(小黑板出示长方形图)书P55的第3题:

学校要在这块长方形草地周围植树,你能算出这块草地的周长吗?

(1)学生动手,独立计算周长。

(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。

教师板书算式:(64+26)2 642+262

(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。655+455=(65+45)5

2、统计本班的男女生人数,写在小黑板上。

现在要求每人栽3棵树,那我们班一共能栽多少棵树?

(1)学生动手,独立计算棵树。

(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。

教师板书算式:

(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。

三、尝试讨论:

1、从上课到现在,我们一共写了6组算式,他们结果相同,可是算式不一样,我们来找找看,这些算式有什么共同的特点?

仔细观察这些算式等号的左边都是一些怎样的算式?(教师根据学生的回答即时小结两个加数的和乘一个数并板书)

仔细观察等号的右边,这些算式又有什么共同的特点?它和左边的算式有什么联系?(教师根据学生的回答及时小结两个加数分别乘第三个数,再把积相加并板书)

2、验证发现:

(1)是不是所有像这样写的两个算式就有这样的规律呢?你能照样子写出几个这样的算式并验证一下吗?

在写之前,先想一想,你写了2个算式准备如何验证?(引导学生用计算的方法验证)

(2)学生尝试写算式。验证然后汇报交流。

(3)汇报讨论结果:

教师板书学生的算式,并问学生是如何验证的?

(4)观察这些算式,等号左边有什么共同点?右边呢?等号左右两边有什么联系?

(5)小结:等号左边的算式都是两个加数的和与一个数相乘的积,等号右边的算式都是这两个加数分别与一个数相乘,再把所得的积相加。等号左边算式中的两个加数,就是等号右边算式中两个不同的乘数;等号左边算式中的一个乘数,就是等号右边算式中两个相同的乘数。

3、总结乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这就是我们今天学习的乘法分配律(板书课题)。

你能用你喜欢的方式表示这个规律吗?

学生自编公式,集体汇报介绍自己写的公式。

四、反馈调节:

1、你能用今天学的知识解释刚才你怎么猜出第四道口算题的?

2、现在我们把书翻到P55第1题,这些等式不完整,你能把它们补充完整吗?

先请学生读题目要求

(42+35)2=42 +35

2712+4312=(27+)

1526+1514=()

72(30+6)=

学生自己思考,填写,校对时请学生说一说是怎样思考的,填写的依据是什么?

2、书P55的第二题:在作业纸上呈现。

先请学生读题目要求,再独立完成,校对时说说自己是怎么判断的?

(64+36)8 648+368

(28+32)7 287+32

1539+4539(15+45)39

4050+5090 40(50+90)

74(20+1)7420+74

25(17+3)2517+253

再请学生在四组得数相等的算式中各选做一题,比比谁算得快。

学生选题计算。

交流都是选得什么题目?为什么选它们?(因为计算简便)

运用乘法分配律还可以使计算简便,该怎样简算,这是我们下节课学习的内容。

3、解决实际问题:

(1)变新授时的长方形题目为求这个长方形的长比宽多多少米?

让学生独立解答。汇报交流。(得到两种解法,板书)

(2)变植树题为求女生比男生少种多少棵树?

让学生独立解答。汇报交流。(得到两种解法,板书)

(3)现在你对乘法分配律有什么新的认识吗?

五、总结:

今天你学会了什么?你能向大家介绍一下乘法分配律吗?

《乘法分配律》优秀公开课教案 篇5

一、教学目标:

(一)知识目标。

1、过探索活动,进一步体会探索的过程和探索方法。

2、通过探索活动,发现乘法分配律,并用字母进行表示。

(二)能力目标。

1、学习过程中,培养学生的探索意识和探索精神。

2、探索、交流过程中,培养学生发现问题、提出问题的能力。

3、培养学生观察、比较、抽象、概括能力。

(三)德育目标。

体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。

二、教学重点:

理解乘法分配律。

三、教学难点:

乘法分配律的应用。

四、教学方法:

1、猜测法。

2、验证法。

五、教具准备:

课件。

六、教学过程:

(一)导课。

应用乘法结合律进行简算。

2745= 8(725) = 3425=

(二)学习新课。

1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?

2、学生汇报:有的说100块,有的说90块。

3、详细汇报

生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)

生2 :我也发现有90块,因为有10行瓷砖,每行9块。

生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。

4、请大家观察这些例子的左右两边,有什么特点?

生1:从左到右是相同因数乘不同因数的和。

生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。

5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C

表示三个数,你能写出乘法结合律吗?

6、(A+B)C=AC+BC叫乘法的分配律。

(三)巩固练习。

1、填一填。

35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )

2、拓展练习。

运用学的规律,将计算过程变得简便些。

201950= 632547=

(四)全课总结。

这节课,你学到了那些知识?会用乘法分配律简便运算吗?

(五)布置作业。

第49页练一练第2、3题。

探究新知 篇6

1.导人新课:

前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使

一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)

2.教学例5:

(1)出示例5:

(2)引导学生观察、讨论、交流。

(3)教师引导学生观察两种算式,发现了什么?使学生懂得:

①两个算式相等。

②两个算式可用等号连接。

学生答,教师板书:(18+7)×6=150

18×6+7×6二150

(]8+7)×6二18×6+7×6 .

(4)教师出示:20×(15+9)

20× 15+20×9=480

20×(15+9)二20×15+20×9

组织学生分组讨论,使学生明确:每组中算式所表示的意义。

反馈练习:按题目要求,请你说出一个等式。(投影出示)

(——+——)×——=——×——+——×——

学生答,教师填写投影。

(通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发

散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐

达到水到渠成。)

教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘

数和乘数的位置。)

②两个加数分别同一个数相乘再把两个积相加。

③等号左右两边两个算式相等。

3.概括定律:

通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生

结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。

4.反馈练习:

横线上能填几?为什么?

(32+35)×4二——×4+——×4

(62+12)×3=——×——+——×——

教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个

数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学

生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)

5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学

们观察我们练习的。乘法结合律,在运算上有什么特点?

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加

数分别同这个数相乘,再把两个积相加比较简便。

6.教学例7:

(1)出示例7:

102×43

=(100+2)×43

=4300+86

=4386

想:把102看成(100+2),再用43分别去乘100和2,可以用口算

用了乘法结合律。

教师说明:熟练后第二步可以不写,画上虚线。

(2)出示9×37+9×63

①组织同学讨论。

②组织同学阅读教科书第65页。

③启发学生明白了什么?

(乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学

生知识迁移类推,通过合作学习,能够自己学会新知。)

乘法分配律教案 篇7

教学目标:

1、发现、理解和掌握乘法分配律;

2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

3、培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

教学重点:乘法分配律的意义及其应用。

教学难点:应用乘法分配律进行简便计算。

教学过程:

一、创设情境,激发兴趣:

(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

生:(齐)高兴激动。

生1::打个招呼,宋老师好。

生2:宋老师好!

师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

生:不是,是分别握手。

生:乘法分配律(小声地)

(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

二、自主探索,合作交流

师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

(1)阅读理解:让学生充分表达自己知道了什么。

生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

生2:每个小组共有6人。

(2)分析解答:

学生汇报自己的解法,引导学生说明不同算法的理由。

板书:(4+2)×25 4×25+2×25

2.两个算式的结果怎样?用什么符号连接?生读等式

板书:(4+2)×25=4×25+2×25

生读算式(4+2)×25=4×25+2×25

3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

口头列式,得出(58+42)×9=9×58+9×42(生读等式)

4、观察这两组算式,请你写出一些类似的式子。

每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

投影展示

生1:(1+2)×3=1×3+2×3

(3+2)×4=4×3+2×4

(10+2)×5=10×5+2×5

(6+4)×5=6×5+4×5

生2:(4×2)×3=4×3+2×3

生3:他的算式是错的,括号里应该是两数之和。

生4:( + )× = × + ×

(a+b)×c= a×c+ b×c

a×(b+c) = a×b+ a×c

师;尝试用文字总结发现的规律

生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、

等号两边的算式有什么相同和不同?

5、集体归纳。

抓住:两个数和、分别相乘

小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

6、讨论记忆乘法分配律的方法。

师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。

、、、、、

学生的方法很多。

(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

三、巩固新知,尝试练习

1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

(12+200)×3=□×3+□×3

15×(40+2)=□×40+□×2

2、数学游戏:找朋友

(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?

(2)整理卡片,分成两组

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (22+18)×7 ③ 22×7+18×7

分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题。看谁算的快。

(设计意图:制造冲突,引出认知矛盾)

男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

小结:能口算,并且能凑整十、整百数,算起来比较简便。

利用乘法分配律可以使一些计算简便。

(这一环节进行充分运用,渗透简便运算的意识)

四、运用规律,内化新知

(8+4)× 25= 34×72+34×28=

先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

五、课堂总结与评价:

用自己的话说一说什么是乘法分配律?

(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

板书设计:

乘法分配律

(4+2)×25 = 4×25+2×25

(a+b)×c= a×c+ b×c

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (88+12)×7 ③ 88×7+12×7

《乘法分配律》优秀公开课教案 篇8

教学内容:

教科书第69页例6,练习十四的第310题。

教学目的:

使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

教具准备:

复习中的题目写在小黑板上。

教学过程 :

一、复习。

教师出示式题:

1.(35+65)37 2.3537+6537

3.85(174+26) 4.85174+8526

5.(80+8)25 6.8025+825

7.32(200+3) 8.32300+323

根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课

1.教学例6。

(1)教师出示例题,计算937+963。

教师:这道题是要计算两个乘积的和。

仔细看一看这道题里的两个乘法计算中的因数有什么特点?

(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

这是应用了什么运算定律?

教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:10243。

教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

板书:10243

=(100+2)43

=10043+243

=4386

上面计算中的第二步根据是什么?(乘法分配律。)

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

三、课堂练习

做练习十四的题目。

1.第3题,让学生口算。

2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

5.提前做完的学生做第19*题。

《乘法分配律》优秀公开课教案 篇9

一、教学内容:

乘法分配律教材第36页的例3

二、教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

三、教学重点:

指导学生探索乘法的分配律。

四、教学难点:

乘法分配律的应用。

五、教学准备:

小黑板、口算题、例题、练习题等。

六、教学策略:

本节课的学习我主要采取自主探究学习,把问题教 学法,合作教学法,情境教学法等结合运用于教学过程中。使学 生自主、勇敢地体验尝试和实践活动来进行综合学习。

七、教学过程:

(一)、设疑导入

同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?( 简便)

接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

(二)、探究发现

1.猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

这道题算得怎么不如刚才的快啊?(它和前面的题目不一样)

好,我们来看一下它与前面的题目有什么不同?

这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

为什么这样算哪?

你是怎么知道的?你知道什么是乘法分配律吗?

你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2.验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

(学生计算,并汇报。)

……

师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

小学四年级数学《乘法分配律》教案 篇10

教学内容:

教科书第69页例6,练习十四的第310题。

教学目的:

使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

教具准备:

复习中的题目写在小黑板上。

教学过程:

一、复习。

教师出示式题:

1、(35+65)37

2、3537+6537

3、85(174+26)

4、85174+8526

5、(80+8)25

6、8025+825

7、32(200+3)

8、32300+323

根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的。计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课。

1、教学例6。

(1)教师出示例题,计算937+963。

教师:这道题是要计算两个乘积的和。

仔细看一看这道题里的两个乘法计算中的因数有什么特点?

(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

这是应用了什么运算定律?

教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:10243。

教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

板书:10243

=(100+2)43

=10043+243

=4386

上面计算中的第二步根据是什么?(乘法分配律。)

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

三、课堂练习。

做练习十四的题目。

1、第3题,让学生口算。

2、第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

3、第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

4、第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

5、提前做完的学生做第19题。

巩固发晨 篇11

1.练习十四第1题。

2.在横线上填上适当的数。

(”(24+8)×125=一×一+一×一

(2)25×(20+4)=25×——+25×——

(3)45×9+55×9=(——+——)×——

(4)8×27+73×8=8×(——+——)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相

同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

3.把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×5 24×5+24×8

(3)20×(17+15) 20×17+20×15

(4)(40+28)×5 40×5+28

(5)(10×125)×8 - 10×8+125× 8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4.选择题:

(1)28×(42十29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29)

(2)与6×8—6×8相等的式子是( )

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9

5.练习十四第4题,投影出示。

6,分组计算练习十四第3题。

《乘法分配律》优秀公开课教案 篇12

教学目标

1.使学生理解乘法分配律的意义.

2.掌握乘法分配律的应用.

3.通过观察、分析、比较,培养学生的分析、推理和概括能力.

教学重点

乘法分配律的意义及应用.

教学难点

乘法分配律的反应用.

教具学具准备

口算卡片、投影仪.

教学步骤

一、铺垫孕伏

1. 口算.

(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

2. 用简便方法计算.(说明根据什么简算的)

25×63×4

3. 师生比赛,看谁算得又对又快.

20×5+5×80 (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1.导入:

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).

2.教学例6:

(1)出示例6:演示课件“乘法分配律”出示例6 下载

(2)引导学生观察每组的两个算式.

(3)教师提问:从上面的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都可以用等号连接.

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的意义.

(6)反馈练习:按题要求,请你说出一个等式.(投影出示)

(__+__)×__=__+__×

教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘.

其次是等号右边两个加数分别同一个数相乘再把两个积相加.

最后是等号左右两边的两个算式相等.

3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

4.反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

根据练习学生从而得出: (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

5.教学例7:演示课件“乘法分配律”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据乘法分配律,可以把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便。现在你们会了吗?

三、巩固发展 演示课件“乘法分配律”出示练习 下载

1. 练习十四第1题.

根据运算定律在□里填上适当的数.

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2.在横线上填上适当的数.

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

3.把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4.选择题:

(1)28×(42+29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5.练习十四第4题,投影出示.

一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?

四、课堂小结

今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

五、布置作业

练习十四第3题.

用简便方法计算下面各题.

(80+8)×25 35×37+65×37

32×(200+3) 38×29+38

一键复制全文保存为WORD
相关文章