量子通信论文优秀9篇

“闪耀的北斗”彰显的是“科技创新”的目标追求。北斗系统的成功源于无数科研人员干着“惊天动地事”,做着“隐姓埋名人”,用刻苦钻研挺起民族的脊梁。卫星导航系统,是一个国家重要的基础设施。书痴者文必工,艺痴者技必良,本文是可爱的编辑给大家收集整理的量子通信论文优秀9篇。

卫星通信论文 篇1

FDMA/DAMA卫星通信网动态为链路分配各种资源,为了高效利用资源和保证通信链路传输质量,资源分配时需考虑影响卫星通信链路性能的各种因素。影响卫星通信链路性能的主要因素有:天线尺寸、调制编码方式、卫星参数和雨衰等。

1.1天线尺寸天线是地球站的重要组成部分,天线尺寸(口径)直接关系到地球站的发射和接收能力,影响通信链路的调制、编译码选择,关系到链路对地球站功放、卫星转发器功率的需求,是影响资源分配策略的重要因素。对上行链路,天线口径越大地球站发射增益越大,发射同样的EIRP需要的功放功率就小。对下行链路,地球站天线决定了地球站的G/T值。天线口径大,地球站G/T值就高,接收性能越好,转发器利用率高。卫星资源分配中,天线尺寸影响地球站功放功率分配和转发器带宽功率分配,应根据收、发站天线口径对链路性能进行计算分析,按策略调整调制编码方式,优化分配地球站和卫星转发器功率资源,保证可靠通信同时功率、带宽占用相对平衡。

1.2调制编码方式调制、编码方式是卫星通信链路的重要特征参数,影响信号效率以及带宽、功率资源分配。一方面,调制、编码方式与业务信息速率IR决定带宽分配量;另一方面,对确定的误码率性能有最低的链路载噪比C/N门限值要求,进而影响链路对转发器功率资源的分配需求。卫星链路质量要求一定时,如误比特率Pb=10-7,不同调制、编码方式要求的门限C/N不同。同样的调制编码方式下,由于硬件技术水平不同,不同型号调制解调设备要求的门限C/N也不同。链路门限C/N越高,需要发站较多的发射能力和收站更好的接收能力,消耗卫星转发器更多的功率资源。为了分配使用带宽、功率,在具体的资源分配策略下,通过比较选择不同的调制、编码方式组合,优化分配资源,保证通信可靠的同时,功率、带宽占用相对平衡。

1.3卫星参数卫星参数包括频率带宽参数和功率参数,都属于空间段资源。带宽参数即转发器带宽;功率参数主要包括3个:饱和EIRP、G/T和饱和通量密度SFD。卫星在地面不同地点的EIRP、G/T值不同,分别通过EIRP覆盖图和G/T覆盖图表示该卫星的EIRP和G/T覆盖特性。由于卫星上一般都有C波段和Ku波段转发器,所以一颗卫星信号的EIRP覆盖图就分别有C波段覆盖图和Ku波段覆盖图[4]。为卫星通信链路分配资源时,需要使用以上卫星参数,通过链路计算来计算分配卫星功率资源,以及发送地球站的功放功率资源,准确选择地球站对应的卫星参数十分重要,尤其对于地球站的移动站型,每次进行业务链路资源分配计算时,需要使用移动站当时所在地点的响应卫星参数(EIRP、G/T)进行资源动态分配计算。为支持资源分配策略,需要建立每个卫星的EIRP和G/T覆盖特性数据库。另外,卫星的干扰噪声也影响链路计算的准确性,具体每个卫星的干扰噪声系数需向卫星服务商查询。

1.4雨衰在10GHz以上频段(Ku和Ka以上频段),降雨的衰减是卫星链路衰减的主要因素[2]。降雨造成的影响主要体现在对电波信号的衰落、对地面站天线系统G/T值的减小以及由此带来链路载噪比的变化,随着电波频率的提高,其影响也就愈加显著[5]。降雨对上行链路和下行链路均会产生影响。对上行链路,降雨时若要保持(C/T)u不变,则只有改变地球站发射载波的有效全向辐射功率EIRPe,只有增加发射机的发射功率。对下行链路,降雨时若要保持(C/T)d不变,则只有改变卫星发射载波的有效全向辐射功率EIRPs,即增加卫星功放的发射功率。文献[8-10]对雨衰进行了详细分析。一般通过2种措施应对降雨对链路的影响。一种措施是在初期为链路分配资源时,计算雨衰值,并在链路计算中考虑雨衰余量,通过增加发站、转发器的功率来预先防范雨衰的影响;另一种措施是通信过程中,通过功率控制机制在降雨时增加地球站发射机功率。功率控制机制不在本文研究范围,雨衰的大小决定于该地面站雨速率的统计分布、仰角和工作频率,具体雨衰计算参考文献[5,6]。资源动态分配中,通过计算发、收地球站雨衰,增加链路计算雨衰余量,在初期分配资源时分配一定富裕的功率资源,以提高链路通信过程中发生降雨时的可用性。

2资源分配策略设计及软件设计

2.1优化目标FDMA/DAMA卫星通信网资源动态分配策略,是从资源分配角度优化网络管理,保证卫星通信网的优化运行,主要需达到以下目标:①满足链路可用性:如满足链路误码率指标、系统可用度指标等;②高效使用资源:包括资源的动态复用、提高带宽效率等。资源动态分配策略首先要保证分配结果能够保证链路性能,是可用的,同时保证资源高效使用。

2.2分配策略分配策略是为达到资源优化分配使用的目标,综合各种因素进行计算、权衡和优化决策的过程。为了满足可用性,在动态分配资源时,应以目标链路误码率对应的门限Eb/N0进行链路计算,对Ku以上频段考虑系统可用度对应的雨衰余量,并且在链路时间上避开地球站日凌、星蚀发生时段。为了提高资源利用率,满足业务通信前提下,尽可能采用动态分配资源机制;空间段卫星资源一般基于功带平衡原则分配;带宽资源充足,功率紧张(包括转发器功率和地球站功放功率)时,优选合理调制编码方式,保证传输可靠性;带宽资源紧张功率资源充足时,优选高效调制编码方式,保证分配可满足。在进行资源分配计算时,对小天线发大天线收情况,接收能力强,一般按照功带平衡原则即可;对小天线发小天线收情况,发送接收能力均弱,情况允许时考虑多占带宽节省功率的调制编码方式;对大天线况,地球站功放功率资源充足时,可以考虑采用高效调制编码方式提高带宽使用效率。当业务链路速率要求具有一定范围时,如果卫星带宽资源充足,可按照较大的速率为其分配卫星资源;如果卫星带宽资源紧张,则可以按最小速率为其分配卫星资源,以满足其最低业务需求。

2.3资源分配流程FDMA/DAMA卫星通信网资源分配流程如图2所示。根据到来的业务请求,首先确定业务的收、发站及速率需求范围,然后根据地球站参数、卫星参数、站点实时雨衰及目前的资源使用现状,计算可用编码调制方式下的资源需求结果,然后根据分配策略规则,优选分配结果(编码调制方式、发送功率等)。资源分配策略中也可以增加对系统Qos(如业务优先级和站点优先级等)的管理,针对不同站点或业务提供差别服务。

2.4软件实现设计资源分配在FDMA/DAMA卫星通信网络管理系统中是一个相对独立的功能,可以设计成一个通用化的软件模块嵌入到网络管理系统,实现对资源分配策略的控制。资源动态分配软件模块化组成方案如图3所示,包含以下软件模块:①分配计算模块;②链路计算模块;③策略处理模块;④接口适配模块。分配计算模块控制资源分配计算过程,依资源使用现状分配频率带宽资源。链路计算模块为分配计算模块提供对链路性能计算的功能。策略处理模块按照策略规则确定最终资源分配结果。接口适配模块向FDMA/DAMA卫星通信网络管理系统提供接口,从网络管理系统取得具体业务的资源请求,并将资源分配结果返回给网络管理系统。基础数据支持资源动态分配软件功能的实现,包括地球站信息、卫星覆盖信息、雨衰数据和策略规则等。基础数据可以存储在数据或磁盘文件中,在资源动态分配软件初始化时读入内存使用。资源动态分配软件模块化的组成结构使软件具有通用化特点,仅需适当修改接口适配模块,就可以将软件接入到不同的FDMA/DAMA卫星通信网络管理系统。资源动态分配软件的具体形式可以是DLL动态库或EXE执行文件,与网络管理系统接口可以是API函数或SOCKET网络接口。

3系统测试验证

原某FDMA/DAMA体制卫星通信系统,设计使用固定的调制编译码方式,功率采用建设初期预估值(不考虑雨衰)。按本文资源分配策略对该系统进行优化改造,并对改造前后系统进行测试统计。定义一段时间T内的系统带宽利用率R为每次呼叫成功链路占用带宽量与占用时间乘积的累加和,与系统管理带宽总量B总与测量期时间T乘积的比值。分别测试统计优化前后实际系统运行10天时间内的呼叫情况及资源占用情况,统计数据如表1所示。测试统计数据显示,系统一次呼叫成功率(呼通率)从原系统的0􀆰816优化后提高到0􀆰906,带宽利用率从0􀆰388提高到0􀆰482,均有较大程度提高。测试验证了本文资源分配策略优化方案的有效性和科学性,在保证系统可靠运行的前提下,提高了呼通率、带宽利用率。

4结束语

FDMA/DAMA卫星通信网资源分配是一个复杂的管理过程,综合分析了资源分配中的多种影响因素,研究设计了分配策略和软件实现方案,并在实际FDMA/DAMA卫星通信网管理中应用,运行稳定可靠。测试结果表明,应用本文资源分配策略后系统资源管理性能(呼通率、带宽利用率等)得到明显改善。在其他体制卫星通信网中同样存在资源分配策略问题,如MF⁃TDMA卫星通信网多个载波频率的动态分配,也值得进行针对性的资源分配策略研究。

卫星通信论文 篇2

热备件平时与工作设备(主用设备)一起存放于地球站收发设备在线机柜中,与主用设备一同构成二备一工作模式,当主用设备出现故障时,只需通过设备面板本地控制或监控台远程控制进行主备切换,即可完成热备件的取用;对于离线的冷备件,系统采用以下取用策略:(1)系统某主用设备单元故障报警,通过本地控制/远程控制方式进行主备切换,恢复系统正常工作状态;(2)利用备件管理系统查询仓库中相应故障设备单元的完好备件余量,并打印显示完好备件存放位置和相关信息;(3)若有余量且备件性能检测系统中也有相应备件,则率先从备件性能检测系统中取出相应备件进行更换,恢复系统双机热备工作模式,同时从仓库中取出一个相应备件单元放入备件性能检测系统中,恢复备件性能检测系统的完整性,并记录更换信息;(4)若有余量但备件性能检测系统中无相应备件,则根据具体信息从相应库位中选择一个备件进行更换,恢复系统双机热备工作模式,并记录更换信息;(5)替换下的故障单元放入备件性能检测系统进一步确认故障状态和进行故障定位分析,然后做好标记,再存入专门的故障设备仓库中,同时进行故障单元的入库登记;(6)若无可用备件,则修改系统对应故障设备单元的热备件状态以及系统对应的该设备单元的双机热备工作状态,上报备件缺少情况,以便及时采购进行备件补充。

2备件性能检测系统

基于上述备件维护管理策略可知,要实现地球站收发设备备件的离线性能检测,拟设计构建备件性能检测系统,以对备件性能的长期稳定性进行测试与维护,使更换备件的上线成功率达100%,确保更换备件的可用性和可靠性,从而为卫星通信系统的连续稳定运行提供可靠保障。地球站收发设备的备件分为系统级备件和部件级备件,其中系统级备件是指具备集成为有线闭环测试系统条件的备件,部件级备件是指不具备集成为有线闭环测试系统条件的备件。依据收发设备的备件分类情况,可将备件性能检测系统分为系统级备件性能检测系统和部件级备件性能检测平台,组成框图如图1所示。

2.1系统级备件性能检测系统

备件性能检测系统是针对具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信息产生器及模拟转发器将地球站的发送链路和接收链路的部分零散备件集成为一个自发自收的有线闭环检测链路,用来完成系统级备件的加电测试,并通过监测环路时延值达到对备件的检查与维护,确保更换备件的可用性和可靠性。同时,可完成返修设备及新增设备的验收考核测试、新进人员的业务培训、模拟故障处理演练等任务,具体组成框图如图2所示。

2.2部件级备件性能检测平台

部件级备件性能检测平台是针对不具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信号源、频谱仪、矢量网络分析仪、逻辑分析仪、功率计等测试仪器对零散的部件级备件进行定期检测维护和指标测试,以确保部件级备件的可用性和可靠性。同时,可作为新购置备件的验收测试平台,具体组成框图如图3所示。

3备件管理系统

3.1备件管理系统的体系结构

对于地球站收发设备的备件设备的管理,传统的管理方法是直接将备件设备放入库房,需要时人工从繁杂的备件设备中查找需要更换的备件设备,费时费力且延误备件上线时间,降低了系统不间断运行的可靠性;并且在系统备件状态发生变化时,表格记录形式无法得到及时更新,容易造成管理上的混乱。因此,为提高备件的使用效率,解决备件分散和备件存取造成的管理混乱等问题,本文建立备件管理系统,通过构建备件信息数据库,设计实现备件出入库管理和备件档案管理流程,实现备件设备信息的科学管理,并为地球站装备管理和采购提供数据支持。备件管理系统的体系结构如图4所示。

3.2备件管理系统的功能模块

本文从系统实用性出发,对信号收发备件管理系统进行需求分析,将系统功能模块划分为基本信息管理、备件库存管理、备件计划管理、使用信息管理、查询统计管理、系统信息管理等几个部分。系统各模块的功能如下:(1)基本信息管理基本信息管理用来设置系统的基础数据信息,如用户信息、备件信息、备件供应商信息、仓库及库位信息等,以便为其它的管理模块提供一个统一规范的基础性数据,并且方便系统的维护。(2)备件库存管理备件库存管理是备件管理系统最为重要的管理模块之一,该模块涵盖了备件从入库到出库之间的全部业务流程,主要实现对备件入库管理、备件出库管理、备件档案管理、库存备件明细、库存备件汇总以及库存报警等的管理。(3)备件计划管理备件计划管理主要实现备件采购计划工作中的备件计划、备件需求统计等功能。(4)库房管理库房及存放柜管理是对备件存放的直接映射,通过库房信息以及备件存放位置的信息,方便快捷地将备件定位到库房存放柜中,解决了原始的纸面记录或无库存记录造成的弊端。(5)使用信息管理使用信息管理主要记录备件上机使用情况,为合理采购备件,提供了第一手资料。(6)查询统计管理查询统计管理可提供灵活多样且直观的查询统计方式,统计出的数据准确可靠,用户可以通过统计汇总出各个备件的库存、维修、使用等数据,为领导决策提供依据。(7)系统信息管理系统信息管理主要完成对信号收发备件管理系统的用户信息和用户密码修改的管理。

4结论

本文取得的研究结果为地球站收发设备的备件性能检测、故障单元备件合理更换以及备件的系统化管理提供了一套科学有效的解决方案。根据系统发送链路和接收链路的特点,利用零散备件设计形成闭环检测链路,对备件进行性能维护测试,确保了更换备件的完好性,提高了系统的可靠性;研制设计的备件管理系统对所有备件进行系统化管理,方便备件的查找和及时补充,大大提高了卫星通信系统的维护效率,为系统的稳定可靠运行提供了重要保障。同时,本文研究的备件维护管理策略、备件取用策略、备件管理方案等成果,具有广阔的应用前景和推广价值,可推广应用于其它卫星系统中。

量子通信论文 篇3

关键词:移动通信;生产生活;大数据;云计算;人工智能

通信技术一直伴随人类社会的进步而不断发展,从我国古代的烽火、飞鸽传书、信猴到通信塔、交通指挥手语和航海旗语等都体现了人们生产生活离不开通信。在短短的30年里,随着信息技术的不断发展,移动通信技术也得到蓬勃发展,从早期的1G发展现在大家所使用的4G,而且5G也将很快得到实际应用。随着移动通信技术不断升级发展过程中,给人们生产生活带来了极大的便利,尤其是近几年移动通信速度倍增所带来的智能终端产业的发展,给人们在视觉感受上和交流便利上带来了前所未有的体验,再比如物联网技术可以实现物与物之间的连接等。可见通信网络技术的发展给生活带来便利的同时,也促进了生产技术水平提升。本文通过总结移动通信技术从1G发展到4G的发展历程,和即将使用的5G技术特点后,重点分析了移动通信技术给我们生产生活带来的影响,以及在发展过程中相关技术的影响。通过本论文相关资料的查找学习,也使本人对移动通信技术有了一定的深入了解,为后面进入大学学习做好基础准备。

1移动通信技术发展历程

1G技术是发展于上世纪80年代,采用的通信技术是模拟通信,而且也仅支持语音通话业务,这其中典型的有美国高级移动电话系统AdvancedMobilePhoneSystem(AMPS)和欧洲的北欧移动电话NMT,以及日本电信电话株式会社NTT等。由于模拟通信安全性能差,且传输方式只能以半双工方式进行,所谓半双工是指同一时刻只能一方发送信号到另外一方,这与后面发展的全双工完全没法相比,全双工是双方可以同时发送信号到对方,所以1G技术很快就被2G技术所取代。正是由于模拟移动通信技术的局限,很快2G技术就得到了发展,典型的有欧洲的GSM,现在我们生活周围仍然也有使用,这种先进的数字移动通信技术采用了分块子系统的管理方式实现了系统数字化传输。在此基础之上又发展了我们所熟知的GPRS技术,有的资料将其化为2.5G技术,这主要是考虑到比GSM技术更先进,给移动网络带来了高速、高带宽的多媒体数据传输。但2G使用过程中,人们发现其传输速度上还难以达到人们的期望,这时候顺应技术的发展,产生了3G技术,相比2G技术,3G技术主要体现在大幅提升了语音和数据的传输速度,有了3G技术的发展,让人们体验到了视频电话、电视电话、电子商务等全新的体念,这期间也促进了智能终端技术的发展,尤其是以智能手机为代表的产业得到了快速发展。当然这里面也有很多标准,其中TD-SCDMA是我国自行制定的3G标准,在国内外得到了大量采纳。前几年4G概念也逐步被提出到应用,我国在4G移动通信是走在前列的,其主要是实现了宽带接入和分布网络,主要包括宽带无线接入、宽带无线局域网、移动宽带系统和交互式广播网络,可以实现任何地方用宽带接入互联网,如我们现在应用最多的就是Wi-Fi接入,移动智能终端技术与业务得到了快速发展,智能手机、平板电脑、移动POS机等各式各样的智能终端的出现和使用,进一步体现了移动通信技术带来日新月异的变化。

2移动通信技术对生产生活的影响

随着移动通信技术的发展与应用,提升数据传输速率的同时,其传输的安全性和可靠性也得到了大幅提升,因此其应用的领域和类型也越来越多,本文在此主探讨移动通信技术对生产生活方面带来的影响与作用。在生产制造领域,移动通信技术逐步得到了广泛应用。如在一些无法可靠布线的环境下通过移动通信技术实现生产信息的采集、生产过程数据的监控等。近些年也发展了工业无线通信技术,其本质就是采用移动式的通信来满足实际工业应用要求。如有的企业将移动通信技术应用于安全生产管理的实时交互上,更为广泛的是很多企业都在移动通信基础之上开拓了电视电话会议和移动式会场的设置上。通过查找资料发现,现在移动通信技术几乎渗透国民生产的各个领域,给生产制造带来一场革命性的变化,不仅简化了原有系统复杂度,降低现场工作人员劳动强度,更为生产效率、节能环保等带来极大的技术支持。尤其是近几年提出的互联网+和云计算等技术的实施,更是离不开移动通信技术的支持,互联网+与云计算的融合几乎成为当前移动通信技术进一步发展的动力源泉。还有在工业领域提出的全新工业4.0概念,如图1所示。其主要思想是将传统的工业生产理念转变为融合信息通信技术的现代化理念,让信息技术推动生产技术的革命性变化,这说明移动通信技术将会起到举足轻重的作用。图1工业4.0布局示意图在生活服务领域,人们的体会应该更为深刻,当前大家使用的智能手机带来的视频电话、微信支付、支付宝业务、滴滴打车、共享单车,以及停车计费系统(如图2所示)等给生活带来了极大的便利,还有最近马云在杭州开的首家无人超市业务均用到了通信技术。可见,移动通信技术的发展已经渗透的生活的各个领域,出去吃饭、购物、消费、就医、入学等直接全部手机支付,给百姓生活带来巨大变化,人们的观念也随着移动通信技术的使用逐步有了新的认识,如家庭式的微信群、班级群、校友群、购物群等让分散各地的人们找到了共同的群落。图2停车计费系统示意图虽然随着移动通信技术的发展给生产生活带来了技术推进与进步,但是任何事务的发展都有两面性,移动通信技术也一样,其给生产生活带来便利的同时也有很多负面影响,如无人超市的发展将会让很多人失业、工厂使用移动通信等先进的网络技术实现工厂生产的高度自动化将会导致工人的下岗,不仅如此,如此大的数据业务在移动网络传输,其生产安全和个人隐私问题也让人们担忧,一旦数据被恶意侵害者利用,后果不堪设想。所以从本人浅薄的观点看来,移动通信技术的发展不能忽视数据传输的安全性问题,唯有移动数据安全性得到保证才能进一步促进移动通信技术的健康发展。

3未来移动通信技术的发展设想

从前面的分析可以看出,移动通信技术将会实现数据传输的高速化、宽带化、泛在化发展,实现以用户为中心的移动通信系统。其中移动通信与云计算、大数据、人工智能的融合将是一个很有朝气的发展趋势,这里移动通信是信息传输的渠道、大数据是载体、云计算和人工智能是数据处理方法,通过这几项技术的充分发展,相互渗透,将会为生产生活带来新的发展。相信再过几年随着5G技术、量子通信技术的发展与应用,人们的通信技术和体验也将会完全不同,可以说,在某种程度上移动通信技术的发展是其他技术发展的基础,移动通信技术在促进其他技术发展的同时也一同促进自身技术的不断发展与升级,所以短短几年我们不仅从1G发展到了今天大面积使用的4G,而且5G和量子通信也离我们不远了。

4结论

卫星通信论文 篇4

自通信车改装后投入使用以来,通过近5年来各种规模的应急演练以及2010年玉树7.1级地震、2013年青海省海西州5.0级地震的实际检验,该应急卫星通信车在使用中暴露出来很多的问题,总结情况如下:(1)原有车内设备机柜设计及布局不合理,使得各设备的供电及信号之间产生交叉干扰。其中部分通信设备的散热条件无法保证,电力线路杂乱无章。在实际使用过程中,不仅存在故障排查困难,同时还有因用电安全引发火灾等事故的重大隐患。鉴于上述情况,对机柜内设备进行了重新布局,只保留与卫星通信相关的通信设备及供电设备,将部分周边设备进行下架处理。(2)原车所用的视频编解码器及网络交换机等设备,经与原厂家联系后,确认部分产品已停产,另有部分已无法提供维修必须的备品备件。因而通过对此类设备进行维修,使其具备通信功能的做法不可行。因此更换掉原有的解码器,采用时下主流的视频会议设备及网络交换机,以确保应急通信车与指挥中心视音频信号的安全畅通。(3)原车卫星设备的配置不合理。该车是在原有箱式卫星便携站的基础上进行了改进,将便携站的全套设备安装于改装后的依维柯厢式货车内,天线部分做了车顶安装。由于车顶天线与功放采用软波导连接结构,长期风吹日晒会产生老化磨损。破裂后的波导产生微波信号泄漏,造成通信质量下降的同时,对现场操作的工程技术人员也会产生人身伤害。对此采取的策略是:平常不使用时对车辆加盖防尘遮雨罩,定期检查软波导的连接结构,如发现问题及时联系厂家更换或维修。(4)卫星系统对星时间长或无法正确对星。由于原有卫星系统未配备频谱仪或卫星信标机等对星设备,使得自动对星动作完成后无法对目标卫星的正确与否进行有效判定。因而,往往造成对不上或对错星的情况,无法实现正常通信。基于上述情况,对现有设备进行优化。其中,对已停产或无法提供维修服务的设备进行更换;部分尚能使用的设备作为现有链路的备份设备;使原有的单通路卫星应急系统升级成为具有一定抗灾能力的1∶1备份的卫星应急通信系统。此外,在寻星过程中尽量避免指挥车周围有高层建筑物、树木枝叶等阻碍,以免造成卫星波速回波反射[1]。(5)整车配重不合理,集成后车辆右后部偏重,影响车辆行驶的平稳性。因此,在满足基本通信功能的前提下对车厢设备,车顶卫星系统和后舱供电设备重新合理布局,调整车辆的平衡性。

2对策探索

目前,卫星通信技术是我国大范围区域内应急通信的主要技术手段,包括VSAT技术系统、BGAN技术系统。短波通信技术在地震应急救援现场的局域通信中也有很大的作用。这类应急通信系统应当具有高信噪比、大容量、高稳定性、全天候、盲区小、抗干扰、多通道、低功耗、小型便携、高机动性等基本特性[2]。在目前技术水平条件下,应进一步完善通过多种技术系统集成的震后应急通信系统,以解决地震后初期不同情况下地震现场与后方指挥中心的通信。

2.13G技术的应用据科学统计,不同震级的地震因为释放能量的大小不同,对震区内的通信环境的影响也有不同的差别。比如,Ms5.0~6.0级地震发生后,震区大部分地面网络或3G网络受损普遍轻微,Ms6.0~7.0级地震对地面网络或3G基站的破坏一般发生在高烈度区,而Ms7.0级以上的地震发生后,地面通信设施基本不可用[3]。应急通信车应根据地震现场的实际情况选择不同的通信方式,在地面通信设施受损较小的情况下可依托地面网络或者3G作为信道开展视频会议、语音通讯、数据传输业务,极端条件下使用VAST卫星网络,这样可大幅度提高地震应急通讯效率。3G网络与VAST卫星网络相比传输速度较快,下行速度峰值理论可达3.6Mbit/s,上行速度峰值也可达384kbit/s。国内支持国际电联确定3个无线接口标准,分别是中国联通WCDMA、中国移动TD-SCDMA、中国电信CDMA2000。WC-DMA以其技术成熟、终端类型多、速率高、网络覆盖好等特点在3种3G网络中具有明显优势,因此可以采用WCDMA技术作为主用3G通信技术,实现应急通信车与指挥中心的3G通信,CD-MA2000或TD-SCDMA可作为备用的3G通信方式。

2.2短波电台的应用短波通信属于独立自主通信,不依赖其他有线和无线通信手段都必须具备的网络、传输线路、中继体和建筑等基础运行条件,抗毁能力最强,是实现中、远程无线联络的基本手段[4]。从点对点直通距离看,短波是所有无线通信方式中距离最远的一种无线通信手段。另外,短波通信设备简单,可以根据使用要求进行固定设置,也可以个人背负或车载安装进行移动通信,组网灵活,实时性好,特别是在救灾初期常常是主要依赖的通讯工具。因此,我们可以建设一套短波通信网络,由车载电台、便携式电台组成。车载电台用于组成指挥所通讯枢纽或作移动通讯使用,选择使用鞭形天线或双极天线,这样可以保证应急通信车在一般行进速度时正常通信,便携式电台具有体积小和重量轻等特点,一般采用鞭形天线,利用地波进行近距离通信,主要用于应急通信车无法抵达的陡峭山地灾害现场,由应急人员背负便携式电台进入地震现场,保障通讯联络,实现无盲区通讯。为了解决短波通信网与其他通信的融合问题,同时提高整个短波通信网络的可靠性,必要时可以配备多网系融合设备,通过该设备可以将短波无线通信和有线通信、卫星通信及超短波通信等通信手段进行融合,通过其他制式的承载网络,实现对短波系统的延伸和扩展,从而可以大幅度提高通讯效率[5]。

3结语

随着人们生活水平的发展,经济密度的提高,地震灾害对社会的影响也越来越显著,如何使地震应急卫星通信车在地震现场更好的发挥作用,不断提升地震应急卫星通信车对突发地震事件的应急及救援指挥能力,使其具有机动能力强、建立通信链路快、集成度高、通信距离远、通讯方式多样化、功能强大、减少地形敏感的特点,为新形势下的灾害应急救援工作、防震减灾事业做出更大的贡献,还需要不断思考和努力,同时也是青海省防震减灾工作亟待解决的问题。

卫星通信论文 篇5

为了使构建的卫星通信业务基本框架符合企业运营流程管理逻辑,支撑卫星网络规划建设,提供面向客户的运营服务和保障,卫星通信业务基本框架采用自顶向下的方法,对卫星通信服务进行模块划分、描述和定义,力争构建起一个涵盖卫星通信业务建设、运营、管理完整业务链、全面系统的基本框架。

1.1基本框架的模块设计思路

对于卫星通信企业来说,卫星通信业务是其最根本的核心产品,卫星通信企业是通过向客户销售卫星通信业务产品,以实现满足客户需求、增加客户价值和公司盈利发展。因此,我们首先选取卫星通信业务为切入点,希望采用价值链分析方法对卫星通信业务产品的全生命周期进行细化分解,力争能够理清、认识、理解各组成环节要素及其相互关系,为基础框架的设计奠定基础。如图1所示,在一个卫星通信业务的全生命周期中,主要包括了前期客户需求调查研究、业务规划、产品设计、能力建设,中期的市场营销、业务开通、服务保障、运行维护,以及后期的业务产品退出或转型升级等各环节要素;另外在其各个环节实施过程中还需要企业人力、财务、质量管理、知识管理、品牌建设等运作管理环节进行基础支撑保障。从图1可以看出,卫星通信业务的全生命周期基本上分为两个阶段,第一阶段为前期卫星通信业务规划和能力建设,其主要完成了由战略和业务目标驱动,进行基础设施建设和形成业务产品或服务能力;第二阶段为中后期的卫星通信业务的运营和服务,主要承担了对业务产品进行运营管理并形成服务能力和产生收益。两个阶段之间相互关联、协同发展。业务规划与能力建设工作是运营与服务工作的前提和条件。只有设计出满足市场需求的业务产品,并能够及时具备能力并推出市场,才能够向客户提供满意的服务和可靠地运营保障;另一方面,运营与服务工作是业务规划和能力建设的实现和发展。业务规划和能力建设工作完成之后,必须通过运营和服务来实现产品销售和客户价值增加,在给客户提供服务的过程中不断发现和挖掘客户需求,并能够及时反馈给业务规划与能力建设进行业务产品的改进、提升和开发,从而形成最令用户满意、最具竞争力的优质服务产品。与此同时,两个阶段的各个环节都需要企业管理来进行支撑和保障。对于运营服务型企业来说,其更加关注运营与服务,所有业务规划与建设以及企业管理工作,都是企业为了通过运营服务产生价值、满足客户需求所需不同层面的服务保障工作。因此,为了在基础框架中突出强调卫星通信业务的规划建设和运营服务支撑的两个关键环节,同时体现出企业管理的基础支撑和保障作用,我们从总体上将卫星通信业务基本框架分为三大模块,即,战略与基础设施模块、运营与服务模块和企业管理模块,如图2所示。

1.2基本框架的层次设计思路

客户的卫星通信业务需求分类多种多样,我们可从市场、产品、资源和组织四个关键因素进行分析研究。客户购买的是卫星通信业务产品,而卫星通信企业的核心基础设施所能支撑的仅是企业向客户提品所需要的资源能力,要想将资源能力转化为客户需求实现,还需要通过卫星通信业务产品进行有效衔接。对于卫星通信企业而言就是对各种卫星通信资源和服务能力进行规划、设计和组装,形成了可以独立计价和运维支撑的业务产品。此外,客户所需业务产品多样,卫星通信服务商还需要结合供应商或者合作伙伴的基础设施资源进行有效组合使用,以发挥核心资源的最大效能和满足客户需求实现。因此,客户需求的实现主要由卫星通信企业的市场、业务、资源和供应商等关键因素协同完成。另外一方面,在基本框架的设计中,我们希望构建起能够面向客户的端到端运营服务支撑体系,即以客户需求为引导,业务实现为手段,资源、供应商和组织管理流程为保障的运营服务体系。主要经过市场需求的挖掘、提炼与转达,业务的开发、集成与实施,调动内外部资源,最终实现业务并反馈给用户的过程,如图3所示。该过程中,输入端是市场,输出端也是市场,形成的是一个从市场到市场的端到端的闭环,从而最终实现为客户提供最为优质和满意的服务。综上所述,为了表明客户需求实现过程中四个关键要素及其之间的相互支撑关系,并强调打造端到端的高效运营服务体系,我们在三大模块基础上,又将卫星通信业务基本框架划分为四个层次,包括市场层、业务层、资源层和供应链层,如图4所示。如图4的层次设计,将市场层放在最高层客户紧邻的第一位,突出强调企业是从客户需求出发,以客户需求为根本依据的理念;逐级向下的各层分别为业务层、资源层和供应链层,充分体现了客户需求实现是通过具体业务来实现,业务产品需要资源提供支撑,最底层的供应商和合作伙伴为企业提供除核心资源以外所需配套资源的各要素协同关系。这种层次设计充分体现出卫星通信企业的以客户为中心为市场服务的运营理念。

2基本框架各模块的设计

根据前述基本框架结构设计思路,我们对卫星通信业务基本框架各模块进行进一步设计和定义,各模块功能描述如下。战略与基础设施模块设计战略与基础设施模块主要负责指导和支撑运营服务。包括市场战略、资源战略的制定、基础设施规划、基础设施的构筑、产品和服务的开发和管理以及供应链/价值链的开发和管理。其中,基础设施不仅包括空间卫星资源的规划、建造、测控、运营和退役的全生命周期管理,还包括支撑产品运营服务的其他硬资源和软资源,如地面测控系统、客户关系管理、知识共享库,等等。运营与服务模块设计运营与服务模块主要负责客户需求实现和服务保障。包括日常的服务提供、运营支撑准备、质量保障以及销售管理和供应商/合作伙伴关系管理等,其包含所有由客户驱动的直接面向客户的运行和管理工作。组织管理模块设计组织管理模块为完成战略与基础设施模块和运营与服务模块所需进行的公司内部机构组建,包括了任何商业运行所必须的基本的企业或商务支持。

3基本框架各层次的设计

3.1市场层设计

市场层主要包括客户需求挖掘、分析、客户细分、销售和渠道管理、市场营销管理、服务产品和定价管理,以及客户关系管理、问题处理、服务等级协议管理和计费等。在战略与基础设施模块内,市场层提供对企业核心业务产品的规划开发管理,包括制定战略、开发新产品服务、管理现有资源、实施市场及战略等所需职能。在运营与服务模块内,客户关系管理集中考虑客户需求的基础情况和管理。

3.2业务层设计

业务层包括业务的设计开发、业务配置、业务问题管理、质量分析以及业务使用量的计费等。在战略与基础设施模块中的服务开发与管理就是为运营与服务模块提供所需产品或服务能力的规划、开发和建设,它包括服务战略制定、服务的性能管理和评估、确保未来服务需求能力等所必须的功能。在运营与服务模块中业务运行管理聚焦于对客户服务的提供,包括客户需求分析、服务方案设计、和服务保障等客户服务所需的功能性需要。本层的焦点是服务提供和管理,面向客户提供个性化服务。

3.3资源层设计

资源层主要包括基础设施的规划设计、建设和管理,是为支持卫星通信运营服务所需的卫星资源、地面基础设施和软资源等的规划、开发和交付,主要包括卫星资源、卫星测控站、业务监测站、运营服务网络平台、IT系统、知识共享库等,以及新技术的引入与现有资源技术的互相作用、现有资源性能管理和评估,确保满足未来服务需求的能力等所必须的功能。资源管理和运行主要负责卫星资源管控(卫星性能监视、分析和控制)和其他地面基础设资源的运维管理等所有功能性责任,确保各类基础设施资源平稳运转,能够为客户提供所需的端到端服务能力,并直接或间接地响应服务、客户和员工的需求。同时也包括对资源的功能集成、关联和实时数据统计,以便进行信息综合管理和采取提质增效措施。

3.4供应链层设计

供应链层主要包括处理与卫星建造商、设备提供商、集成商和工程服务商等合作伙伴的交互,它既包括基础设施的供应链管理,也包括与供应商和合作伙伴之间关于日常运营的接口管理。

4基本框架的整体设计

综合上述分析,卫星通信业务基本框架模型一方面突出卫星服务商的基础设施规划建设和运营服务支撑的核心重要性,另一方面强调面向客户、聚焦前端提供端到端的服务交付能力,从而我们可以得出卫星通信业务基本框架的整体结构设计,如图5所示。如图5所示,箭头以上半部分代表从卫星通信业务的全生命周期管理和客户需求实现两个维度进行的三个模块、四个层次结构设计思路;箭头的下半部分表示抽象化、可视化的卫星通信业务基本框架结构设计。该基本框架从顶层将卫星通信业务服务商划分为战略与基础设施、运营与服务和组织管理三大模块,并在框架布局上体现出面向客户的服务中战略与基础设施是前提先导,运营与服务是关键实施,组织管理是全过程支撑的运营特点;该框架自上而下的四个层次架构设计,充分体现出卫星通信企业是以客户需求为引导,以业务实现为手段,以资源和供应商为保障的层次递进关系,各层次环环相扣,紧密链接。这种以客户为中心,面向市场的层次设计,确保企业在享用客户需求时更迅速、策略更灵活,大大提供客户满意度,同时能够更优化企业内外部软硬资源的工作效能,以最高效的方式为客户提供最适当的信息服务,真正做到让大市场来主导企业的流程架构。

5结束语

本文自上而下,从顶层设计全面搭建了卫星通信业务基本框架的整体架构。一是总结提炼卫星通信业务建设及运营、管理经验,按照卫星通信业务规划建设、业务运行、经营管理“三大方面”主要任务,构思设计了规划与基础设施、运营与服务、组织管理“三大模块”,突出体现了业务规划与基础设施的核心先导位势、运营与服务的经济中心位势、以及经营管理的支撑保障位势,确立了基本架构的垂直结构。二是结合卫星通信业务分类“四个维度”,以面向市场、服务客户、统筹资源、全球供应为基本设计原则,从端到端将卫星通信业务链条划分为市场、业务、资源、供应链“四个层次”,确立了基本构架的水平层次。三是将“三大模块”和“四个层次”相结合,对规划与基础设施、运营与服务两个模块,分垂直和水平两个方向过程进行设计,并以组织管理模块作为上述业务活动的全面支撑,搭建了卫星通信业务的整体架构,明确了基本框架中各模块、层次的结构关系,实现了对卫星通信业务建设、运营、管理各方面工作的全覆盖。

卫星通信论文 篇6

论文摘要]随着现代科学技术的飞速发展,构建完善坚强可靠的电力通信网,显得越来越重要。文章结合电力通信的特点和需求及无线新技术的特性,分析无线通信技术在电网通信中的应用前景。

一、概述

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。中国论文联盟-七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

从天线技术上看,仅仅3G和WiMax技术采用了MIMO技术,而其他技术均未采用MIMO技术;从传输环境上看,仅仅WiMax技术和3G技术支持非视距传输,其余技术均要求视距传输环境;从网络安全和QoS机制上看,WiMax技术和3G技术在这方面做得比较优秀、完善,其余的均存在较大的问题。

量子通信论文 篇7

2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。

2紫外纳米激光器

继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线的阈值(约为40kW/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。

3量子阱激光器

2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。

3.1量子线激光器

近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线路中每隔80km(50mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。

3.2量子点激光器

由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。

4微腔激光器

微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5W。

该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μA的电流。

长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运InGaAs/InGaAsP多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。

微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直径的微碟激光器在77K温度下的激射阔值功率为5μW,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为1.55μm,激射阈值电流为2.3mA,在77K下激射直径为10μm的电泵浦InGaAs/InGaAsP微碟激光器以及国际上首个带有引出电极结构的电泵浦微柱激光器。值得一提的是,这种微碟激光器具有高集成度、低阈值、低功耗、低噪声、极高的响应、可动态模式工作等优点,在光通信、光互连、光信息处理等方面的应用前景广阔,可用于大规模光子器件集成光路,并可与光纤通信网络和大规模、超大规模集成电路匹配,组成光电子信息集成网络,是当代信息高速公路技术中最理想的光源;同时,可以和其他光电子元件实现单元集成,用于逻辑运算、光网络中的光互连等。

5新型纳米激光器

据报道,世界上最早的纳米激光器是由美国加州大学伯克利分校的科学家于2001年制造的,当时使用的是氧化锌纳米线,可发射紫外光,经过调整后还能发射从蓝色到深紫外的激光。但是,美中不足的是只有用另一束激光将纳米线中的氧化锌晶体激活,其才会发射出激光。而新型纳米激光器具备了电子自动开关的性能,无需借助外力激活,这无疑会使其实用性大为增强。

卫星通信论文 篇8

平台在设计上主要分为两大部分,分别为Sever端和Client端。它们以数据库作为中间连接桥梁,如图1所示。图1平台整体架构Sever端程序主要功能是同步数据,卫星通信系统的GAC记录文件由GAC服务器运行的定时脚本传输至FTP服务器,Sever端得到GAC记录文件后再结合操作人员编写的带宽更改文件,处理后得到通信机上下线记录,并录入数据库。其中GAC记录文件为txt格式文件,记录格式为:yyyy/mm/dd-hh:mm:ss\t<以“-”分隔的MAC>\t<info>,例如2013/04/21-17:24:4400-40-fd-01-4d-04NOTREGISTEREDcausesynchronizationlost。带宽更改记录为csv格式文件,记录格式为:yyyy-mm-ddhh:mm:ss,<MAC>,<bandwidth>,<real_bandwidth>,<worker>,<serial_no>,例如2013-07-0705:45:00,0040FD016e7a,2Mbps专用池1,vbdc-2048,张三,50这些信息经过服务器端处理过会形成信息完整的通信机上下线记录。Client端程序根据运营需要,对特定或全部通信机在指定时段的上线时间进行结算,并生成供参考的计费结果,还可以同时生成用于递交给客户的临时用星确认表。

2运营管理平台的实现

2.1开发环境的选择程序代码的编译环境为MicrosoftVisualC++2008,它可以高效开发Windows应用,尤其是Office的应用,数据库采用MySQLSever5.0,其使用的SQL语言是用于访问数据最常用的标准语言,它有着速度快、体积小、代码开源等特点,特别时候想节约成本的中小型企业[4]。另外还需要具有FTP上传及下载功能的传输工具LibCURL。

2.2数据同步算法设计2Mbps专用池在线时间的计算是本平台的核心部分。2Mbps专用池是一种总带宽为2Mbps的捆绑复用模式,同属于一个池的通信机,只要有一台在线就记为该池在线,只有当所有通信机都下线才记该池下线,该算法属于递归调用,具体计算过程如图2所示。

2.3平台的实现流程及内存分配Sever端程序首先备份、更名上一次使用的GAC记录文件、带宽更改记录文件,然后登录FTP服务器下载最新的GAC记录文件和带宽更改记录文件,再登录MySQLSever建立各数据库与母表,同时导入GAC记录文件和带宽更改表,建立通信机分立带宽更改表,选出本轮数据同步需要更新的GAC记录,根据需要进行掉线情况过滤并进行通信机分立上下线计算及2Mbps专用池上下线计算,最后编译时间戳记录文件LastUpdate.ini并断开MySQL连接。该段程序用于描述时间的数据类型time_t实际为_int64的64位整数,time_t变量初始化时必须调用time(0)赋值为当前时刻的“历史秒”,即从1970-01-0100:00:00到当前时刻历经的秒数。tm是一个结构体,包含若干计时单位的序数(年序数以1900年为0、月序数以1月为0、日序数以1日为1),用于记述相对于从1900-01-0100:00:00到当前时刻历经的时间。计算两笔GAC记录时间差的方法是:从GAC记录中读出的时间字符串赋值给tm结构体变量,调用mktime()函数将两个GAC记录时间的tm结构体变量记述的时刻分别转化为time_t变量,再调用difftime()函数将两个time_t变量的差值计算出来。VC用于处理时间的数据类型丰富多样,选择适当的数据类型和处理函数可以事半功倍。MYSQL_RES和MYSQL_ROW是MYSQLAPI内置的数据类型。MYSQL_RES类型变量担负了SELECT存储语句查询结果的任务。MYSQL_RES类变量在使用完成后需调用mysql_free_result()进行内存回收,而在实际开发中,根据上下文不一定能判定一个MYSQL_RES类型变量初始化(或经上一次内存回收)后是否被使用过,而如对初始化后未经使用的MYSQL_RES类型变量进行内存回收,可能会引发错误导致程序异常退出。经权衡,决定在开发中放弃对MYSQL_RES类型变量回收内存的设计,牺牲一定的空间换取可靠性。MYSQL_ROW类型变量实际是二维指针,使用时要特别注意SE-LECT语句的查询结果究竟有多少列,如果越界访问使得该二维指针超出查询结果的列数,会导致程序异常退出。Client端可以查询数据库,选出在指定时段内归属欲结算项目的通信机列表,同时查询在指定时段内欲结算项目的有效租用合同,接着结合计时计费结果的框架将查询的上下线结果填入表格,并按带宽小计时长计入临时数据库表便可完成计时计费结果文件。最后让VisualC++程序控制Word自动化客户端生成用星确认表,这里要通过使用OLE-DB(ObjectLinkingandEmbeddingDatabase)技术,它提供了对包括对关系数据库和非关系数据库在内的所有文件的统一接口。自动化客户端可以理解为模拟人工进行的编辑操作,对编辑目标文档需要进行的操作序列,可逐条列出,然后分解成每一个键入(或点选,拖动)的操作,几乎每一个分解操作,都对应了自动化客户端程序的一行指令。自动化客户端的性能卓越,可以在一两秒内完成数十页含表文档的编辑工作。Office的自动化客户端编程中,最常遇到COleVariant和CComVariant两种数据类型:COleVariant类是对VARIANT结构的封装,当对象构造时首先调用VariantInit进行初始化,然后根据参数中的标准类型调用相应的构造函数,并使用VariantCopy进行转换赋值操作,当VARIANT对象不在有效范围时,它的析构函数就会被自动调用,由于析构函数调用了VariantClear,因而相应的内存就会被自动清除。CComVariant提供了很多构造函数来对VARI-ANT能够包含的多种类型进行处理。CComVariant没有提供针对VARIANT包含的各种类型的转换操作符,必须直接访问VARIANT的成员并且确保这个VARIANT变量保存着期望的类型。

2.4平台实现界面介绍根据如上所述对平台的设计思想和方法,利用MFC分别实现出了人机交互的Sever端和Client端,其界面如图3-4所示。Sever端除了选择系统类别、开始结束时间功能,主要还能实现清空数据库、开始同步数据及暂停、备份、还原等功能。Sever端正常都是在运行状态的,未遇故障时是不停运的。Client端中首先要输入用户信息、设备信息、项目信息及租用信息,利用“新建”和“删除”按钮可添加或删除这些信息。在界面的左边有搜索功能,只要输入设备信息、项目信息或租用信息的关键词就可在下面的列表框里显示出相关的信息。按钮“导入带宽信息”实际就是导入上文所说的带宽更改记录文件,导入成功后便可实现右下角的计时计费功能,把结果以Excel表格形式生成到指定路径下,还能同时生成Word版用星确认表。

3结束语

本文介绍了卫星通信运营管理的基本任务,由此给出了运营管理对数据处理的思路和方法,设计出了运营管理平台,实现了对运营项目的自动化管理,弥补了对卫星带宽的使用情况只能由人工来核算的缺陷。本平台在工程应用中已处于试运行阶段,需求已经能全部实现,且结果正确可靠。

卫星通信论文 篇9

1.1信号采集天线对准某颗通信卫星(如中星6A)后,移动车载站上的卫星信标接收机会收到一定强度的卫星信标,信标值的大小用来衡量对星的准确度。信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。

1.2信号处理通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。

车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

2实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

3结语

车载站在进行移动卫星通信过程中,如果天线偏离目标卫星,对周围的环境同样产生辐射危害,及时关闭发射载波也是至关重要,本文阐述的载波自动关闭系统同样适用于天线偏离目标卫星的情况。软件使用方便,已经成功用于多套车载站项目。

一键复制全文保存为WORD
相关文章